All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1251

If the curve y = f(x) passes through the point (1, −1) and satisfies the differential equation y(1 + xy) dx = xdy then f(12)

is equal to

a) 25

b) 45

c) 25

d) 45

If the curve y = f(x) passes through the point (1, −1) and satisfies the differential equation y(1 + xy) dx = xdy then f(12)

is equal to

a) 25

b) 45

c) 25

d) 45

IIT 2016
1252

One or more than one correct options

Let f : (0, ∞) → ℝ be a differentiable function such that f(x)=2f(x)x

for all x ∈ (0, ∞) and f(1) ≠ 1. Then

a) limx0+f(1x)=1

b) limx0+xf(1x)=2

c) limx0+x2fx=0

d) |f(x)|2forallx(0,2)

One or more than one correct options

Let f : (0, ∞) → ℝ be a differentiable function such that f(x)=2f(x)x

for all x ∈ (0, ∞) and f(1) ≠ 1. Then

a) limx0+f(1x)=1

b) limx0+xf(1x)=2

c) limx0+x2fx=0

d) |f(x)|2forallx(0,2)

IIT 2016
1253

If , i = 1, 2, 3 are polynomials in x such that  and

F(x) =  
then (x) at x = a is equal to

a) – 1

b) 0

c) 1

d) 2

If , i = 1, 2, 3 are polynomials in x such that  and

F(x) =  
then (x) at x = a is equal to

a) – 1

b) 0

c) 1

d) 2

IIT 1985
1254

If  then f (x) increases in

a) (−2, 2)

b) No value of x

c) (0, ∞)

d) (−∞, 0)

If  then f (x) increases in

a) (−2, 2)

b) No value of x

c) (0, ∞)

d) (−∞, 0)

IIT 2003
1255

A curve passes through the point (1,π6)

. Let the slope of the curve at each point (x, y) is yx+sec(yx) , x > 0. Then the equation of the curve is

a) sin(yx)=lnx+12

b) cosec(yx)=lnx+2

c) sec(2yx)=tanx+2

d) cos2yx=lnx+12

A curve passes through the point (1,π6)

. Let the slope of the curve at each point (x, y) is yx+sec(yx) , x > 0. Then the equation of the curve is

a) sin(yx)=lnx+12

b) cosec(yx)=lnx+2

c) sec(2yx)=tanx+2

d) cos2yx=lnx+12

IIT 2013
1256

The points  in the complex plane are the vertices of a parallelogram if and only if

a)

b)

c)

d) None of these

The points  in the complex plane are the vertices of a parallelogram if and only if

a)

b)

c)

d) None of these

IIT 1983
1257

 

 

IIT 1978
1258

Let f:[0, 1] → ℝ (the set all real numbers)be a function. Suppose the function is twice differentiable, f(0) = f(1) = 0 and satisfiesf′′(x) – 2f′(x) + f(x) ≥ ex, x ∈ [0, 1]Which of the following is true?

a) f(x)<

b) 12<f(x)<12

c) 14<f(x)<1

d) <f(x)<0

Let f:[0, 1] → ℝ (the set all real numbers)be a function. Suppose the function is twice differentiable, f(0) = f(1) = 0 and satisfiesf′′(x) – 2f′(x) + f(x) ≥ ex, x ∈ [0, 1]Which of the following is true?

a) f(x)<

b) 12<f(x)<12

c) 14<f(x)<1

d) <f(x)<0

IIT 2013
1259

If ω(≠1) is a cube root of unity and  then A and B are respectively

a) 0, 1

b) 1, 1

c) 1, 0

d) – 1, 1

If ω(≠1) is a cube root of unity and  then A and B are respectively

a) 0, 1

b) 1, 1

c) 1, 0

d) – 1, 1

IIT 1995
1260

If (1 + x)n = C0 + C1x + C2x2 + .  .  . + Cnxn, then show that the sum of the products of the Cj’s is taken two at a time represented by
 is equal to

If (1 + x)n = C0 + C1x + C2x2 + .  .  . + Cnxn, then show that the sum of the products of the Cj’s is taken two at a time represented by
 is equal to

IIT 1983
1261

Let a, b, c and d be non-zero real numbers. If the point of intersection of lines 4ax + 2ay + c = 0 and 5bx + 2by + d = 0 lie in the fourth quadrants and is equidistant from the two axes, then

a) 2bc – 3ad = 0

b) 2bc + 3ad = 0

c) 2ad – 3bc = 0

d) 3bc + 2ad = 0

Let a, b, c and d be non-zero real numbers. If the point of intersection of lines 4ax + 2ay + c = 0 and 5bx + 2by + d = 0 lie in the fourth quadrants and is equidistant from the two axes, then

a) 2bc – 3ad = 0

b) 2bc + 3ad = 0

c) 2ad – 3bc = 0

d) 3bc + 2ad = 0

IIT 2014
1262

One or more than one correct option

Let α, λ, μ ∈ ℝ. Consider the system of linear equations αx + 2y = λ 3x – 2y = μWhich of the following statements is/are correct?

a) If α = −3, then the system has infinitely many solutions for all values of λ and μ

b) If α ≠ −3, then the system of equations has a unique solution for all values of λ and μ

c) If λ + μ = 0, then the system has infinitely many solutions for α = −3

d) If λ + μ ≠ 0, then the system has no solution for α = −3

One or more than one correct option

Let α, λ, μ ∈ ℝ. Consider the system of linear equations αx + 2y = λ 3x – 2y = μWhich of the following statements is/are correct?

a) If α = −3, then the system has infinitely many solutions for all values of λ and μ

b) If α ≠ −3, then the system of equations has a unique solution for all values of λ and μ

c) If λ + μ = 0, then the system has infinitely many solutions for α = −3

d) If λ + μ ≠ 0, then the system has no solution for α = −3

IIT 2016
1263

Let  and f = R – [R] where [ ] denotes the greatest integer function. Prove that Rf = 42n + 4

Let  and f = R – [R] where [ ] denotes the greatest integer function. Prove that Rf = 42n + 4

IIT 1988
1264

One or more than one correct option

Circle(s) touching X – axis at a distance 3 from the origin and having an intercept of length 27

on Y – axis is/are

a) x2 + y2 – 6x + 8y + 9 = 0

b) x2 + y2 – 6x + 7y + 9 = 0

c) x2 + y2 – 6x − 8y + 9 = 0

d) x2 + y2 – 6x − 7y + 9 = 0

One or more than one correct option

Circle(s) touching X – axis at a distance 3 from the origin and having an intercept of length 27

on Y – axis is/are

a) x2 + y2 – 6x + 8y + 9 = 0

b) x2 + y2 – 6x + 7y + 9 = 0

c) x2 + y2 – 6x − 8y + 9 = 0

d) x2 + y2 – 6x − 7y + 9 = 0

IIT 2013
1265

Using induction or otherwise, prove that for any non-negative integers m, n, r and k
 

Using induction or otherwise, prove that for any non-negative integers m, n, r and k
 

IIT 1991
1266

Let V be the volume of the parallelepiped formed by the vectors  and . If ar, br, cr where r = 1, 2, 3 are non-negative real numbers and , show that V ≤ L3

Let V be the volume of the parallelepiped formed by the vectors  and . If ar, br, cr where r = 1, 2, 3 are non-negative real numbers and , show that V ≤ L3

IIT 2002
1267

One or more than one correct option

A circle S passes through the point (0, 1) and is orthogonal to the circles (x – 1)2 + y2 = 16 and x2 + y2 = 1, then

a) Radius of S is 8

b) Radius of S is 7

c) Centre of S is (−7, 1)

d) Centre of S is (−8, 1)

One or more than one correct option

A circle S passes through the point (0, 1) and is orthogonal to the circles (x – 1)2 + y2 = 16 and x2 + y2 = 1, then

a) Radius of S is 8

b) Radius of S is 7

c) Centre of S is (−7, 1)

d) Centre of S is (−8, 1)

IIT 2014
1268

The locus of the midpoint of a chord of the circle  which subtend a right angle at the origin is

a)

b)

c)

d)

The locus of the midpoint of a chord of the circle  which subtend a right angle at the origin is

a)

b)

c)

d)

IIT 1984
1269

If n is a positive integer and 0 ≤ v < π then show that

If n is a positive integer and 0 ≤ v < π then show that

IIT 1994
1270

A tangent PT is drawn to the circle x2 + y2 = 4 at the point P(3,1)

. A straight line L, perpendicular to PT is tangent to the circle (x – 3)2 + y2 = 1A possible equation of L is

a) x3y=1

b) x+3y=1

c) x3y=1

d) x+3y=5

A tangent PT is drawn to the circle x2 + y2 = 4 at the point P(3,1)

. A straight line L, perpendicular to PT is tangent to the circle (x – 3)2 + y2 = 1A possible equation of L is

a) x3y=1

b) x+3y=1

c) x3y=1

d) x+3y=5

IIT 2012
1271

Let 0 < Ai < π for i = 1, 2, .  .  . n. Use mathematical induction to prove that
 
where n ≥ 1 is a natural number.

Let 0 < Ai < π for i = 1, 2, .  .  . n. Use mathematical induction to prove that
 
where n ≥ 1 is a natural number.

IIT 1997
1272

The centre of those circles which touch the circle x2 + y2 – 8x – 8y = 0, externally and also touch the X- axis, lie on

a) A circle

b) An ellipse which is not a circle

c) A hyperbola

d) A parabola

The centre of those circles which touch the circle x2 + y2 – 8x – 8y = 0, externally and also touch the X- axis, lie on

a) A circle

b) An ellipse which is not a circle

c) A hyperbola

d) A parabola

IIT 2016
1273

Solve

Solve

IIT 1978
1274

 for every 0 < α, β < 2.

 for every 0 < α, β < 2.

IIT 2003
1275

Let (x, y) be any point on the parabola y2 = 4x. Let P be the point that divides the line segment from (0, 0) to (x, y) in the ratio of 1 : 3. Then the locus of P is

a) x2 = y

b) y2 = 2x

c) y2 = x

d) x2 = 2y

Let (x, y) be any point on the parabola y2 = 4x. Let P be the point that divides the line segment from (0, 0) to (x, y) in the ratio of 1 : 3. Then the locus of P is

a) x2 = y

b) y2 = 2x

c) y2 = x

d) x2 = 2y

IIT 2011

Play Selected  Login to save this search...