All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1226

A curve y = f(x) passes through the point P:(1, 1). The equation to the normal at (1, 1) to the curve y = f(x) is (x – 1) + a(y – 1)  = 0 and the slope of the tangent at any point on the curve is proportional to the ordinate of the point. Determine the equation of the curve. Also obtain the area bounded by the Y–axis, the curve and the normal at P.

a)

b) y = ;

c)  ;

d)

A curve y = f(x) passes through the point P:(1, 1). The equation to the normal at (1, 1) to the curve y = f(x) is (x – 1) + a(y – 1)  = 0 and the slope of the tangent at any point on the curve is proportional to the ordinate of the point. Determine the equation of the curve. Also obtain the area bounded by the Y–axis, the curve and the normal at P.

a)

b) y = ;

c)  ;

d)

IIT 1996
1227

Consider the circle x2 + y2 = 9 and the parabola y2 = 8x. They intersect P and Q in the first and fourth quadrants respectively. Tangents to the circle at P and Q intersect the X–axis at R and tangents to the parabola at P and Q intersect the X- axis at S. The ratio of areas of the triangle PQS and PQR is

a)

b) 1:2

c)

d) 1:8

Consider the circle x2 + y2 = 9 and the parabola y2 = 8x. They intersect P and Q in the first and fourth quadrants respectively. Tangents to the circle at P and Q intersect the X–axis at R and tangents to the parabola at P and Q intersect the X- axis at S. The ratio of areas of the triangle PQS and PQR is

a)

b) 1:2

c)

d) 1:8

IIT 2007
1228

Let a + b = 4 where a < 2 and let g(x) be a differentiable function. If  for all x, prove that  increases as (b – a) increases.

Let a + b = 4 where a < 2 and let g(x) be a differentiable function. If  for all x, prove that  increases as (b – a) increases.

IIT 1997
1229

A and B are two separate reservoirs of water. Capacity of reservoir A is double the capacity of reservoir B. Both the reservoirs are filled completely with water, their inlets are closed and then water is released simultaneously from both the reservoirs. The rate of flow of water out of each reservoir at any instant of time is proportionate to the quantity of water in the reservoir at the time. One hour after the water is released the quantity of water in reservoir A is   times the quantity of water in reservoir B. After how many hours do both the reservoirs have the same quantity of water?

a)

b)

c) ln2

d)  

A and B are two separate reservoirs of water. Capacity of reservoir A is double the capacity of reservoir B. Both the reservoirs are filled completely with water, their inlets are closed and then water is released simultaneously from both the reservoirs. The rate of flow of water out of each reservoir at any instant of time is proportionate to the quantity of water in the reservoir at the time. One hour after the water is released the quantity of water in reservoir A is   times the quantity of water in reservoir B. After how many hours do both the reservoirs have the same quantity of water?

a)

b)

c) ln2

d)  

IIT 1997
1230

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse  is

a)  square units

b)

c)  square units

d) 27 square units

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse  is

a)  square units

b)

c)  square units

d) 27 square units

IIT 2003
1231

The function f(x) = |px – q|+ r|x|, x  when p > 0, q > 0, r > 0 assumes minimum value only on one point if

a)  p ≠ q

b)  r ≠ q

c)  r ≠ p

d)  p = q = r

The function f(x) = |px – q|+ r|x|, x  when p > 0, q > 0, r > 0 assumes minimum value only on one point if

a)  p ≠ q

b)  r ≠ q

c)  r ≠ p

d)  p = q = r

IIT 1995
1232

Let b ≠ 0 and j = 0, 1, 2, .  .  . , n. Let Sj be the area of the region bounded by Y–axis and the curve
.

Show that S0, S1, S2, .  .  .  , Sn are in geometric progression. Also find the sum for a = − 1 and b = π.

a)

b)

c)

d)

Let b ≠ 0 and j = 0, 1, 2, .  .  . , n. Let Sj be the area of the region bounded by Y–axis and the curve
.

Show that S0, S1, S2, .  .  .  , Sn are in geometric progression. Also find the sum for a = − 1 and b = π.

a)

b)

c)

d)

IIT 2001
1233

A tangent to the ellipse x2 + 4y2 = 4 meets the ellipse x2 + 2y2 = 6 at P and Q. Prove that tangents at P and Q of the ellipse x2 + 2y2 = 6 are at right angles.

A tangent to the ellipse x2 + 4y2 = 4 meets the ellipse x2 + 2y2 = 6 at P and Q. Prove that tangents at P and Q of the ellipse x2 + 2y2 = 6 are at right angles.

IIT 1997
1234

Let f(θ) = sinθ (sinθ + sin3θ) then f(θ)

a) ≥ 0 only when θ ≥ 0

b)  ≤ 0 for all real θ

c)  ≥ 0 for all real θ

d) ≤ θ only when θ ≤ 0

Let f(θ) = sinθ (sinθ + sin3θ) then f(θ)

a) ≥ 0 only when θ ≥ 0

b)  ≤ 0 for all real θ

c)  ≥ 0 for all real θ

d) ≤ θ only when θ ≤ 0

IIT 2000
1235

Let y = f(x) is a cubic polynomial having maximum at x = − 1 and  has a minimum at x = 1 and f(−1) = 10, f(1) = − 6. Find the cubic polynomial and also find the distance between the points which are maxima or minima.

a)

b)

c)

d)

Let y = f(x) is a cubic polynomial having maximum at x = − 1 and  has a minimum at x = 1 and f(−1) = 10, f(1) = − 6. Find the cubic polynomial and also find the distance between the points which are maxima or minima.

a)

b)

c)

d)

IIT 2005
1236

Each of the following four inequalities given below define a region in the XY–plane. One of these four regions does not have the following property: For any two points (x1, y1) and (x2, y2) in the region, point  is also in the region. The inequality defining the region that does not have this property is

a) x2 + 2y2 ≤ 1

b) max (|x|, |y|) ≤ 1

c) x2 – y2 ≥ 1

d) y2 – x ≤ 0

Each of the following four inequalities given below define a region in the XY–plane. One of these four regions does not have the following property: For any two points (x1, y1) and (x2, y2) in the region, point  is also in the region. The inequality defining the region that does not have this property is

a) x2 + 2y2 ≤ 1

b) max (|x|, |y|) ≤ 1

c) x2 – y2 ≥ 1

d) y2 – x ≤ 0

IIT 1981
1237

The domain of definition of the function           is

a)  

b)  

c)  

d)  

The domain of definition of the function           is

a)  

b)  

c)  

d)  

IIT 2002
1238

The set of values of x which ln(1 + x) ≤ x is equal to .  .  .  .

a) (−∞, −1)

b) (−1, 0)

c) (0, 1)

d) (1, ∞)

The set of values of x which ln(1 + x) ≤ x is equal to .  .  .  .

a) (−∞, −1)

b) (−1, 0)

c) (0, 1)

d) (1, ∞)

IIT 1987
1239

For any positive integers m, n (with n ≥ m), we are given that
  
Deduce that
  

For any positive integers m, n (with n ≥ m), we are given that
  
Deduce that
  

IIT 2000
1240

If A and B are two independent events such that P (A) > 0 and P (B) ≠ 1 then  is equal to

a)

b)

c)

d)

If A and B are two independent events such that P (A) > 0 and P (B) ≠ 1 then  is equal to

a)

b)

c)

d)

IIT 1980
1241

If,  then g(f(x)) is invertible in the domain

a)

b)

c)

d)

If,  then g(f(x)) is invertible in the domain

a)

b)

c)

d)

IIT 2004
1242

Evaluate

a)

b)

c)

d)

Evaluate

a)

b)

c)

d)

IIT 2006
1243

Tangents are drawn to the circle  from a point on the hyperbola . Find the locus of the midpoint of the chord of contact.

Tangents are drawn to the circle  from a point on the hyperbola . Find the locus of the midpoint of the chord of contact.

IIT 2005
1244

The value of the integral π/2π/2(x2+logπxπ+x)cosxdx

is equal to

a) 0

b) π224

c) π22+4

d) π22

The value of the integral π/2π/2(x2+logπxπ+x)cosxdx

is equal to

a) 0

b) π224

c) π22+4

d) π22

IIT 2012
1245

Show that the integral of sinxsin2xsin3x + sec2xcos22x + sin4xcos4x is

 

 

Show that the integral of sinxsin2xsin3x + sec2xcos22x + sin4xcos4x is

 

 

IIT 1979
1246

Let P (x1, y1) and Q (x2, y2), y1 < 0, y2 < 0 be the end points of the latus rectum of the ellipse x2 + 4y2 = 4. The equations of the parabolas with latus rectum PQ are

a)

b)

c)

d)

Let P (x1, y1) and Q (x2, y2), y1 < 0, y2 < 0 be the end points of the latus rectum of the ellipse x2 + 4y2 = 4. The equations of the parabolas with latus rectum PQ are

a)

b)

c)

d)

IIT 2008
1247

Let F : ℝ → ℝ be a thrice differentiable function. Suppose that F(1) = 0, F(3) = −4 and F′(x) < 0 for all x ε (1, 3). Let f(x) = x F(x) for all x ε ℝ.If 13x2F(x)dx=12

and 13x3F(x)dx=40 , then the correct expression is/are

a) 9f(3)+f(1)32=0

b) 13f(x)dx=12

c) 9f(3)f(1)+32=0

d) 13f(x)dx=12

Let F : ℝ → ℝ be a thrice differentiable function. Suppose that F(1) = 0, F(3) = −4 and F′(x) < 0 for all x ε (1, 3). Let f(x) = x F(x) for all x ε ℝ.If 13x2F(x)dx=12

and 13x3F(x)dx=40 , then the correct expression is/are

a) 9f(3)+f(1)32=0

b) 13f(x)dx=12

c) 9f(3)f(1)+32=0

d) 13f(x)dx=12

IIT 2015
1248

 =

a) +c

b) +c

c) +c

d)

 =

a) +c

b) +c

c) +c

d)

IIT 1980
1249

Consider the points
P: (−sin (β – α), cosβ)
Q: (cos (β – α), sinβ)
R: (−cos{(β – α) + θ}, sin (β – θ))
where 0 < α, β, θ <  then

a) P lies on the line segment RQ

b) Q lies on the line segment PR

c) R lies on the line segment QP

d) P, Q, R are non–collinear

Consider the points
P: (−sin (β – α), cosβ)
Q: (cos (β – α), sinβ)
R: (−cos{(β – α) + θ}, sin (β – θ))
where 0 < α, β, θ <  then

a) P lies on the line segment RQ

b) Q lies on the line segment PR

c) R lies on the line segment QP

d) P, Q, R are non–collinear

IIT 2008
1250

One or more than one correct options

The options with the values of α and L that satisfy the equation 04πet[sin6αt+cos4αt]dt0πet[sin6αt+cos4αt]dt=L

is/are

a) α=2,L=e4π1eπ1

b) α=2,L=e4π+1eπ+1

c) α=4,L=e4π1eπ1

d) α=4,L=e4π+1eπ+1

One or more than one correct options

The options with the values of α and L that satisfy the equation 04πet[sin6αt+cos4αt]dt0πet[sin6αt+cos4αt]dt=L

is/are

a) α=2,L=e4π1eπ1

b) α=2,L=e4π+1eπ+1

c) α=4,L=e4π1eπ1

d) α=4,L=e4π+1eπ+1

IIT 2010

Play Selected  Login to save this search...