1226 |
A curve y = f(x) passes through the point P:(1, 1). The equation to the normal at (1, 1) to the curve y = f(x) is (x – 1) + a(y – 1) = 0 and the slope of the tangent at any point on the curve is proportional to the ordinate of the point. Determine the equation of the curve. Also obtain the area bounded by the Y–axis, the curve and the normal at P. a)  b) y = ; c) ; d) 
A curve y = f(x) passes through the point P:(1, 1). The equation to the normal at (1, 1) to the curve y = f(x) is (x – 1) + a(y – 1) = 0 and the slope of the tangent at any point on the curve is proportional to the ordinate of the point. Determine the equation of the curve. Also obtain the area bounded by the Y–axis, the curve and the normal at P. a)  b) y = ; c) ; d) 
|
IIT 1996 |
|
1227 |
Consider the circle x2 + y2 = 9 and the parabola y2 = 8x. They intersect P and Q in the first and fourth quadrants respectively. Tangents to the circle at P and Q intersect the X–axis at R and tangents to the parabola at P and Q intersect the X- axis at S. The ratio of areas of the triangle PQS and PQR is a)  b) 1:2 c)  d) 1:8
Consider the circle x2 + y2 = 9 and the parabola y2 = 8x. They intersect P and Q in the first and fourth quadrants respectively. Tangents to the circle at P and Q intersect the X–axis at R and tangents to the parabola at P and Q intersect the X- axis at S. The ratio of areas of the triangle PQS and PQR is a)  b) 1:2 c)  d) 1:8
|
IIT 2007 |
|
1228 |
Let a + b = 4 where a < 2 and let g(x) be a differentiable function. If for all x, prove that increases as (b – a) increases.
Let a + b = 4 where a < 2 and let g(x) be a differentiable function. If for all x, prove that increases as (b – a) increases.
|
IIT 1997 |
|
1229 |
A and B are two separate reservoirs of water. Capacity of reservoir A is double the capacity of reservoir B. Both the reservoirs are filled completely with water, their inlets are closed and then water is released simultaneously from both the reservoirs. The rate of flow of water out of each reservoir at any instant of time is proportionate to the quantity of water in the reservoir at the time. One hour after the water is released the quantity of water in reservoir A is times the quantity of water in reservoir B. After how many hours do both the reservoirs have the same quantity of water? a)  b)  c) ln2 d)
A and B are two separate reservoirs of water. Capacity of reservoir A is double the capacity of reservoir B. Both the reservoirs are filled completely with water, their inlets are closed and then water is released simultaneously from both the reservoirs. The rate of flow of water out of each reservoir at any instant of time is proportionate to the quantity of water in the reservoir at the time. One hour after the water is released the quantity of water in reservoir A is times the quantity of water in reservoir B. After how many hours do both the reservoirs have the same quantity of water? a)  b)  c) ln2 d)
|
IIT 1997 |
|
1230 |
The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse is a) square units b)  c) square units d) 27 square units
The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse is a) square units b)  c) square units d) 27 square units
|
IIT 2003 |
|
1231 |
The function f(x) = |px – q|+ r|x|, x when p > 0, q > 0, r > 0 assumes minimum value only on one point if a) p ≠ q b) r ≠ q c) r ≠ p d) p = q = r
The function f(x) = |px – q|+ r|x|, x when p > 0, q > 0, r > 0 assumes minimum value only on one point if a) p ≠ q b) r ≠ q c) r ≠ p d) p = q = r
|
IIT 1995 |
|
1232 |
Let b ≠ 0 and j = 0, 1, 2, . . . , n. Let Sj be the area of the region bounded by Y–axis and the curve . Show that S0, S1, S2, . . . , Sn are in geometric progression. Also find the sum for a = − 1 and b = π. a)  b)  c)  d) 
Let b ≠ 0 and j = 0, 1, 2, . . . , n. Let Sj be the area of the region bounded by Y–axis and the curve . Show that S0, S1, S2, . . . , Sn are in geometric progression. Also find the sum for a = − 1 and b = π. a)  b)  c)  d) 
|
IIT 2001 |
|
1233 |
A tangent to the ellipse x2 + 4y2 = 4 meets the ellipse x2 + 2y2 = 6 at P and Q. Prove that tangents at P and Q of the ellipse x2 + 2y2 = 6 are at right angles.
A tangent to the ellipse x2 + 4y2 = 4 meets the ellipse x2 + 2y2 = 6 at P and Q. Prove that tangents at P and Q of the ellipse x2 + 2y2 = 6 are at right angles.
|
IIT 1997 |
|
1234 |
Let f(θ) = sinθ (sinθ + sin3θ) then f(θ) a) ≥ 0 only when θ ≥ 0 b) ≤ 0 for all real θ c) ≥ 0 for all real θ d) ≤ θ only when θ ≤ 0
Let f(θ) = sinθ (sinθ + sin3θ) then f(θ) a) ≥ 0 only when θ ≥ 0 b) ≤ 0 for all real θ c) ≥ 0 for all real θ d) ≤ θ only when θ ≤ 0
|
IIT 2000 |
|
1235 |
Let y = f(x) is a cubic polynomial having maximum at x = − 1 and has a minimum at x = 1 and f(−1) = 10, f(1) = − 6. Find the cubic polynomial and also find the distance between the points which are maxima or minima. a)  b)  c)  d) 
Let y = f(x) is a cubic polynomial having maximum at x = − 1 and has a minimum at x = 1 and f(−1) = 10, f(1) = − 6. Find the cubic polynomial and also find the distance between the points which are maxima or minima. a)  b)  c)  d) 
|
IIT 2005 |
|
1236 |
Each of the following four inequalities given below define a region in the XY–plane. One of these four regions does not have the following property: For any two points (x1, y1) and (x2, y2) in the region, point is also in the region. The inequality defining the region that does not have this property is a) x2 + 2y2 ≤ 1 b) max (|x|, |y|) ≤ 1 c) x2 – y2 ≥ 1 d) y2 – x ≤ 0
Each of the following four inequalities given below define a region in the XY–plane. One of these four regions does not have the following property: For any two points (x1, y1) and (x2, y2) in the region, point is also in the region. The inequality defining the region that does not have this property is a) x2 + 2y2 ≤ 1 b) max (|x|, |y|) ≤ 1 c) x2 – y2 ≥ 1 d) y2 – x ≤ 0
|
IIT 1981 |
|
1237 |
The domain of definition of the function is a)  b)  c)  d) 
The domain of definition of the function is a)  b)  c)  d) 
|
IIT 2002 |
|
1238 |
The set of values of x which ln(1 + x) ≤ x is equal to . . . . a) (−∞, −1) b) (−1, 0) c) (0, 1) d) (1, ∞)
The set of values of x which ln(1 + x) ≤ x is equal to . . . . a) (−∞, −1) b) (−1, 0) c) (0, 1) d) (1, ∞)
|
IIT 1987 |
|
1239 |
For any positive integers m, n (with n ≥ m), we are given that Deduce that
For any positive integers m, n (with n ≥ m), we are given that Deduce that
|
IIT 2000 |
|
1240 |
If A and B are two independent events such that P (A) > 0 and P (B) ≠ 1 then is equal to a)  b)  c)  d) 
If A and B are two independent events such that P (A) > 0 and P (B) ≠ 1 then is equal to a)  b)  c)  d) 
|
IIT 1980 |
|
1241 |
If , then g(f(x)) is invertible in the domain a)  b)  c)  d) 
If , then g(f(x)) is invertible in the domain a)  b)  c)  d) 
|
IIT 2004 |
|
1242 |
Evaluate  a)  b)  c)  d) 
|
IIT 2006 |
|
1243 |
Tangents are drawn to the circle from a point on the hyperbola . Find the locus of the midpoint of the chord of contact.
Tangents are drawn to the circle from a point on the hyperbola . Find the locus of the midpoint of the chord of contact.
|
IIT 2005 |
|
1244 |
The value of the integral is equal to a) b) c) d)
The value of the integral is equal to a) b) c) d)
|
IIT 2012 |
|
1245 |
Show that the integral of sinxsin2xsin3x + sec2xcos22x + sin4xcos4x is
Show that the integral of sinxsin2xsin3x + sec2xcos22x + sin4xcos4x is
|
IIT 1979 |
|
1246 |
Let P (x1, y1) and Q (x2, y2), y1 < 0, y2 < 0 be the end points of the latus rectum of the ellipse x2 + 4y2 = 4. The equations of the parabolas with latus rectum PQ are a)  b)  c)  d) 
Let P (x1, y1) and Q (x2, y2), y1 < 0, y2 < 0 be the end points of the latus rectum of the ellipse x2 + 4y2 = 4. The equations of the parabolas with latus rectum PQ are a)  b)  c)  d) 
|
IIT 2008 |
|
1247 |
Let F : ℝ → ℝ be a thrice differentiable function. Suppose that F(1) = 0, F(3) = −4 and F′(x) < 0 for all x ε (1, 3). Let f(x) = x F(x) for all x ε ℝ.If and , then the correct expression is/are a) b) c) d)
Let F : ℝ → ℝ be a thrice differentiable function. Suppose that F(1) = 0, F(3) = −4 and F′(x) < 0 for all x ε (1, 3). Let f(x) = x F(x) for all x ε ℝ.If and , then the correct expression is/are a) b) c) d)
|
IIT 2015 |
|
1248 |
= a) +c b) +c c) +c d) 
|
IIT 1980 |
|
1249 |
Consider the points P: (−sin (β – α), cosβ) Q: (cos (β – α), sinβ) R: (−cos{(β – α) + θ}, sin (β – θ)) where 0 < α, β, θ < then a) P lies on the line segment RQ b) Q lies on the line segment PR c) R lies on the line segment QP d) P, Q, R are non–collinear
Consider the points P: (−sin (β – α), cosβ) Q: (cos (β – α), sinβ) R: (−cos{(β – α) + θ}, sin (β – θ)) where 0 < α, β, θ < then a) P lies on the line segment RQ b) Q lies on the line segment PR c) R lies on the line segment QP d) P, Q, R are non–collinear
|
IIT 2008 |
|
1250 |
One or more than one correct options The options with the values of α and L that satisfy the equation is/are a) b) c) d)
One or more than one correct options The options with the values of α and L that satisfy the equation is/are a) b) c) d)
|
IIT 2010 |
|