All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1201

Find the point on the curve 4x2 + a2y2 = 4a2, 4 < a2 < 8 that is farthest from the point (0, −2).

a) (a, 0)

b)

c)

d) (0, - 2)

Find the point on the curve 4x2 + a2y2 = 4a2, 4 < a2 < 8 that is farthest from the point (0, −2).

a) (a, 0)

b)

c)

d) (0, - 2)

IIT 1987
1202

The locus of the mid-point of the line segment joining the focus to a moving point on the parabola y2 = 4ax is another parabola with directrix

a) x = −a

b)

c)

d)

The locus of the mid-point of the line segment joining the focus to a moving point on the parabola y2 = 4ax is another parabola with directrix

a) x = −a

b)

c)

d)

IIT 2002
1203

  

  

IIT 2006
1204

Complex numbers  are the vertices A, B, C respectively of an isosceles right angled triangle with right angle at B. Show that

Complex numbers  are the vertices A, B, C respectively of an isosceles right angled triangle with right angle at B. Show that

IIT 1986
1205

Find all maximum and minimum of the curve y = x(x – 1)2, 0 ≤ x ≤ 2. Also find the area bounded by the curve y = x(x – 2)2, the Y–axis and the line y = 2.

a) Local minimum at x = 1, Local maximum at x = , Area =

b) Local minimum at x = , Local maximum at x =1, Area =

c) Local minimum at x = 2, Local maximum at x = , Area =

d) Local minimum at x = , Local maximum at x =2, Area =

Find all maximum and minimum of the curve y = x(x – 1)2, 0 ≤ x ≤ 2. Also find the area bounded by the curve y = x(x – 2)2, the Y–axis and the line y = 2.

a) Local minimum at x = 1, Local maximum at x = , Area =

b) Local minimum at x = , Local maximum at x =1, Area =

c) Local minimum at x = 2, Local maximum at x = , Area =

d) Local minimum at x = , Local maximum at x =2, Area =

IIT 1989
1206

A line is perpendicular to  and passes through (0, 1, 0). Then the perpendicular distance of this line from the origin is  . . .

A line is perpendicular to  and passes through (0, 1, 0). Then the perpendicular distance of this line from the origin is  . . .

IIT 2006
1207

Prove that for complex numbers z and ω,   iff z = ω or .

Prove that for complex numbers z and ω,   iff z = ω or .

IIT 1999
1208

The curve y = ax3 + bx2 + cx + 5 touches the X – axis at (− 2, 0) and cuts the Y–axis at a point Q where the gradient is 3. Find a, b, c.

a)

b)

c)

d)

The curve y = ax3 + bx2 + cx + 5 touches the X – axis at (− 2, 0) and cuts the Y–axis at a point Q where the gradient is 3. Find a, b, c.

a)

b)

c)

d)

IIT 1994
1209

Points A, B, C lie on the parabola . The tangents to the parabola at A, B, C taken in pair intersect at the points P, Q, R. Determine the ratios of the areas of ΔABC and ΔPQR.

Points A, B, C lie on the parabola . The tangents to the parabola at A, B, C taken in pair intersect at the points P, Q, R. Determine the ratios of the areas of ΔABC and ΔPQR.

IIT 1996
1210

Consider the lines given by L1 : x + 3y – 5 = 0; L2 = 3x – ky – 1 = 0; L3 = 5x + 2y −12 = 0. Match the statement/expressions in column 1 with column 2.

Column 1

Column 2

A. L1, L2, L3 are concurrent, if

p. k = −9

B. One of L1, L2, L3 is parallel to at least one of the other two, if

q.

C. L1, L2, L3 form a triangle, if

r.

D.L1, L2, L3 do not form a triangle, if

s. k = 5

Consider the lines given by L1 : x + 3y – 5 = 0; L2 = 3x – ky – 1 = 0; L3 = 5x + 2y −12 = 0. Match the statement/expressions in column 1 with column 2.

Column 1

Column 2

A. L1, L2, L3 are concurrent, if

p. k = −9

B. One of L1, L2, L3 is parallel to at least one of the other two, if

q.

C. L1, L2, L3 form a triangle, if

r.

D.L1, L2, L3 do not form a triangle, if

s. k = 5

IIT 2008
1211

 is a circle inscribed in a square whose one vertex is . Find the remaining vertices.

a)

b)

c)

d)

 is a circle inscribed in a square whose one vertex is . Find the remaining vertices.

a)

b)

c)

d)

IIT 2005
1212

Let a line passing through the fixed point (h, k) cut the X–axis at P and Y–axis at Q. Then find the minimum area of ΔOPQ.

a) hk

b) h2/k

c) k2/h

d) 2hk

Let a line passing through the fixed point (h, k) cut the X–axis at P and Y–axis at Q. Then find the minimum area of ΔOPQ.

a) hk

b) h2/k

c) k2/h

d) 2hk

IIT 1995
1213

Match the following

Column 1

Column 2

i) Re z = 0

A) Re  = 0

ii) Arg z = π/4

B) Im  = 0

C) Re  = Im

Match the following

Column 1

Column 2

i) Re z = 0

A) Re  = 0

ii) Arg z = π/4

B) Im  = 0

C) Re  = Im

IIT 1992
1214

Let An be the area bounded by the curve y = (tanx)n and the line
x = 0, y = 0 and . Prove that for  . Hence deduce that
 

Let An be the area bounded by the curve y = (tanx)n and the line
x = 0, y = 0 and . Prove that for  . Hence deduce that
 

IIT 1996
1215

Consider the circle x2 + y2 = 9 and the parabola y2 = 8x. They intersect P and Q in the first and fourth quadrants respectively. Tangents to the circle at P and Q intersect the X–axis at R and tangents to the parabola at P and Q intersect the X- axis at S. The radius of the incircle of △PQR is

a) 4

b) 3

c)

d) 2

Consider the circle x2 + y2 = 9 and the parabola y2 = 8x. They intersect P and Q in the first and fourth quadrants respectively. Tangents to the circle at P and Q intersect the X–axis at R and tangents to the parabola at P and Q intersect the X- axis at S. The radius of the incircle of △PQR is

a) 4

b) 3

c)

d) 2

IIT 2007
1216

ABCD is a rhombus. The diagonals AC and BD intersect at the point M and satisfy BD = 2AC. If the points D and M represent the complex numbers 1 + i and (2 – i) respectively then find the complex number x + iy represented by A.

a)  

b)  

c)  

d)  

ABCD is a rhombus. The diagonals AC and BD intersect at the point M and satisfy BD = 2AC. If the points D and M represent the complex numbers 1 + i and (2 – i) respectively then find the complex number x + iy represented by A.

a)  

b)  

c)  

d)  

IIT 1993
1217

Find all possible values of b > 0, so that the area of the bounded region enclosed between the parabolas  and  is maximum.

a) b = 1

b) b ≥ 1

c) b ≤ 1

d) 0 < b < 1

 

Find all possible values of b > 0, so that the area of the bounded region enclosed between the parabolas  and  is maximum.

a) b = 1

b) b ≥ 1

c) b ≤ 1

d) 0 < b < 1

 

IIT 1997
1218

Let f(x) = sinx and g(x) = ln|x|. If the ranges of the composition function fog and gof are R1 and R2 respectively then

a)

b) ,

c)

d)

Let f(x) = sinx and g(x) = ln|x|. If the ranges of the composition function fog and gof are R1 and R2 respectively then

a)

b) ,

c)

d)

IIT 1994
1219

Let C1 and C2 be the graph of the function y = x2 and y = 2x respectively. Let C3 be the graph of the function
y = f (x), 0 ≤ x ≤ 1, f (0) = 0. Consider a point P on C1. Let the lines through P, parallel to the axes meet C2 and C3 at Q and R respectively (see figure). If for every position of P (on C1) the area of the shaded regions OPQ and OPR are equal, determine the function f(x).

a) x2 – 1

b) x3 – 1

c) x3 – x2

d) 1 + x2 + x3

Let C1 and C2 be the graph of the function y = x2 and y = 2x respectively. Let C3 be the graph of the function
y = f (x), 0 ≤ x ≤ 1, f (0) = 0. Consider a point P on C1. Let the lines through P, parallel to the axes meet C2 and C3 at Q and R respectively (see figure). If for every position of P (on C1) the area of the shaded regions OPQ and OPR are equal, determine the function f(x).

a) x2 – 1

b) x3 – 1

c) x3 – x2

d) 1 + x2 + x3

IIT 1998
1220

Let d be the perpendicular distance from the centre of the ellipse  to the tangent at a point P on the ellipse. Let F1 and F2 be the two focii of the ellipse, then show that

Let d be the perpendicular distance from the centre of the ellipse  to the tangent at a point P on the ellipse. Let F1 and F2 be the two focii of the ellipse, then show that

IIT 1995
1221

Find the area of the region bounded by the curves y = x2, y = |2 – x2| and y = 2 which lies to the right of the line x = 1.

a)

b)

c)

d)

Find the area of the region bounded by the curves y = x2, y = |2 – x2| and y = 2 which lies to the right of the line x = 1.

a)

b)

c)

d)

IIT 2002
1222

Prove that in an ellipse the perpendicular from a focus upon a tangent and the line joining the centre of the ellipse to the point of contact meet on the corresponding directrix.

Prove that in an ellipse the perpendicular from a focus upon a tangent and the line joining the centre of the ellipse to the point of contact meet on the corresponding directrix.

IIT 2002
1223

A curve passing through the point  has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of P from the X-axis. Determine the equation of the curve.

A curve passing through the point  has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of P from the X-axis. Determine the equation of the curve.

IIT 1999
1224

Let f : ℝ → ℝ be any function. Define g : ℝ → ℝ by g(x) = |f(x)| for all x. Then g is

a) Onto if f is onto

b) One–one if f is one–one

c) Continuous if f is continuous

d) Differentiable if f is differentiable

Let f : ℝ → ℝ be any function. Define g : ℝ → ℝ by g(x) = |f(x)| for all x. Then g is

a) Onto if f is onto

b) One–one if f is one–one

c) Continuous if f is continuous

d) Differentiable if f is differentiable

IIT 2000
1225

f(x) is a differentiable function and g(x) is a double differentiable function such that  
If  prove that there exists some c ε (−3, 3) such that .

f(x) is a differentiable function and g(x) is a double differentiable function such that  
If  prove that there exists some c ε (−3, 3) such that .

IIT 2005

Play Selected  Login to save this search...