|
1201 |
The question contains Statement – 1(assertion) and Statement – 2 (reason). Let f (x) = 2 + cosx for all real x. Statement 1: For each real t, there exists a point c in [t, t + π] such that because Statement 2: f (t) = f[t, t + 2π] for each real t a) Statement 1 and 2 are true. Statement 2 is a correct explanation of Statement 1. b) Statement 1 and 2 are true. Statement 2 is not a correct explanation of Statement 1. c) Statement 1 is true and Statement 2 is false. d) Statement 1 is false. Statement 2 is true.
The question contains Statement – 1(assertion) and Statement – 2 (reason). Let f (x) = 2 + cosx for all real x. Statement 1: For each real t, there exists a point c in [t, t + π] such that because Statement 2: f (t) = f[t, t + 2π] for each real t a) Statement 1 and 2 are true. Statement 2 is a correct explanation of Statement 1. b) Statement 1 and 2 are true. Statement 2 is not a correct explanation of Statement 1. c) Statement 1 is true and Statement 2 is false. d) Statement 1 is false. Statement 2 is true.
|
IIT 2007 |
|
|
1202 |
Let f(x) = (1 – x)2 sin2x + x2 and Which of the following is true? a) g is increasing on (1, ∞) b) g is decreasing on (1, ∞) c) g is increasing on (1, 2) and decreasing on (2, ∞) d) g is decreasing on (1, 2) and increasing on (2, ∞)
Let f(x) = (1 – x)2 sin2x + x2 and Which of the following is true? a) g is increasing on (1, ∞) b) g is decreasing on (1, ∞) c) g is increasing on (1, 2) and decreasing on (2, ∞) d) g is decreasing on (1, 2) and increasing on (2, ∞)
|
IIT 2013 |
|
|
1203 |
Use mathematical induction to prove: If n is an odd positive integer then is divisible by 24.
Use mathematical induction to prove: If n is an odd positive integer then is divisible by 24.
|
IIT 1983 |
|
|
1204 |
Let PS is the median of the triangle with vertices P(2, 2), Q(6, −1) and R(7, 3), then the equation of the line passing through (1, −1) and parallel to PS is a) 4x – 7y – 11 = 0 b) 2x + 9y + 7 = 0 c) 4x + 7y + 3 = 0 d) 2x – 9y – 11 = 0
Let PS is the median of the triangle with vertices P(2, 2), Q(6, −1) and R(7, 3), then the equation of the line passing through (1, −1) and parallel to PS is a) 4x – 7y – 11 = 0 b) 2x + 9y + 7 = 0 c) 4x + 7y + 3 = 0 d) 2x – 9y – 11 = 0
|
IIT 2014 |
|
|
1205 |
One or more than one correct option For a > b > c > 0, the distance between (1, 1) and the point of intersection of the lines ax + by + c = 0 and bx + ay + c = 0 is less than , then a) a + b – c > 0 b) a − b + c < 0 c) a − b + c > 0 d) a + b – c < 0
One or more than one correct option For a > b > c > 0, the distance between (1, 1) and the point of intersection of the lines ax + by + c = 0 and bx + ay + c = 0 is less than , then a) a + b – c > 0 b) a − b + c < 0 c) a − b + c > 0 d) a + b – c < 0
|
IIT 2014 |
|
|
1206 |
Using mathematical induction, prove that m, n, k are positive integers and for p < q
Using mathematical induction, prove that m, n, k are positive integers and for p < q
|
IIT 1989 |
|
|
1207 |
If one of the diameters of the circle, given by the equation x2 + y2 – 4x + 6y – 12 = 0 is a chord of a circle S whose centre is at (−3, 2), then the radius of S is a) b) c) d)
If one of the diameters of the circle, given by the equation x2 + y2 – 4x + 6y – 12 = 0 is a chord of a circle S whose centre is at (−3, 2), then the radius of S is a) b) c) d)
|
IIT 2016 |
|
|
1208 |
If for all k ≥ n then show that 
If for all k ≥ n then show that 
|
IIT 1992 |
|
|
1209 |
The function (where [y] is the greatest integer less than or equal to y) is discontinuous at a) All integers b) All integers except 0 and 1 c) All integers except 0 d) All integers except 1
The function (where [y] is the greatest integer less than or equal to y) is discontinuous at a) All integers b) All integers except 0 and 1 c) All integers except 0 d) All integers except 1
|
IIT 1999 |
|
|
1210 |
If are three non-coplanar unit vectors and α, β, γ are the angles between , v and w, w and u respectively and x, y and z are unit vectors along the bisector of the angles α, β, γ respectively. Prove that
|
IIT 2003 |
|
|
1211 |
For how many values of p, the circlex2 + y2 + 2x + 4y – p = 0 and the coordinate axis have exactly three common points a) 0 b) 1 c) 2 d) 3
For how many values of p, the circlex2 + y2 + 2x + 4y – p = 0 and the coordinate axis have exactly three common points a) 0 b) 1 c) 2 d) 3
|
IIT 2014 |
|
|
1212 |
A tangent PT is drawn to the circle x2 + y2 = 4 at the point . A straight line L, perpendicular to PT is tangent to the circle (x – 3)2 + y2 = 1A common tangent to the circles is a) x = 4 b) y = 2 c) d)
A tangent PT is drawn to the circle x2 + y2 = 4 at the point . A straight line L, perpendicular to PT is tangent to the circle (x – 3)2 + y2 = 1A common tangent to the circles is a) x = 4 b) y = 2 c) d)
|
IIT 2012 |
|
|
1213 |
The integer n, for which is a finite non–zero number is a) 1 b) 2 c) 3 d) 4
The integer n, for which is a finite non–zero number is a) 1 b) 2 c) 3 d) 4
|
IIT 2002 |
|
|
1214 |
The locus of the middle points of the chord of tangents drawn from points lying on the straight line 4x – 5y = 20 to the circle x2 + y2 = 9 is a) 20(x2 + y2) – 36x + 45y = 0 b) 20(x2 + y2) + 36x − 45y = 0 c) 36(x2 + y2) – 20x + 45y = 0 d) 36(x2 + y2) + 20x − 45y = 0
The locus of the middle points of the chord of tangents drawn from points lying on the straight line 4x – 5y = 20 to the circle x2 + y2 = 9 is a) 20(x2 + y2) – 36x + 45y = 0 b) 20(x2 + y2) + 36x − 45y = 0 c) 36(x2 + y2) – 20x + 45y = 0 d) 36(x2 + y2) + 20x − 45y = 0
|
IIT 2012 |
|
|
1215 |
Let be a regular hexagon in a circle of unit radius. Then the product of the length of the segments , and is a)  b)  c) 3 d) 
Let be a regular hexagon in a circle of unit radius. Then the product of the length of the segments , and is a)  b)  c) 3 d) 
|
IIT 1998 |
|
|
1216 |
f(x) is twice differentiable polynomial function such that f (1) = 1, f (2) = 4, f (3) = 9, then a) there exists at least one x (1, 2) such that  b) there exists at least one x (2, 3) such that  c)  d) there exists at least one x (1, 3) such that 
f(x) is twice differentiable polynomial function such that f (1) = 1, f (2) = 4, f (3) = 9, then a) there exists at least one x (1, 2) such that  b) there exists at least one x (2, 3) such that  c)  d) there exists at least one x (1, 3) such that 
|
IIT 2005 |
|
|
1217 |
The radius of a circle having minimum area which touches the curve y = 4 – x2 and the line y = |x| is a) b) c) d)
The radius of a circle having minimum area which touches the curve y = 4 – x2 and the line y = |x| is a) b) c) d)
|
IIT 2017 |
|
|
1218 |
Let AB be a chord of the circle subtending a right angle at the centre then the locus of the centroid of the triangle PAB as P moves on the circle is a) A parabola b) A circle c) An ellipse d) A pairing straight line
Let AB be a chord of the circle subtending a right angle at the centre then the locus of the centroid of the triangle PAB as P moves on the circle is a) A parabola b) A circle c) An ellipse d) A pairing straight line
|
IIT 2000 |
|
|
1219 |
Given a circle 2x2 + 2y2 = 5 and a parabola Statement 1: An equation of a common tangent to the curves is Statement 2: If the line is the common tangent then m satisfies m4 – 3m2 + 2 = 0 a) Statement 1 is correct. Statement 2 is correct. Statement 2 is a correct explanation for statement 1 b) Statement 1 is correct. Statement 2 is correct. Statement 2 is not a correct explanation for statement 1 c) Statement 1 is correct. Statement 2 is incorrect. d) Statement 1 is incorrect. Statement 2 is correct.
Given a circle 2x2 + 2y2 = 5 and a parabola Statement 1: An equation of a common tangent to the curves is Statement 2: If the line is the common tangent then m satisfies m4 – 3m2 + 2 = 0 a) Statement 1 is correct. Statement 2 is correct. Statement 2 is a correct explanation for statement 1 b) Statement 1 is correct. Statement 2 is correct. Statement 2 is not a correct explanation for statement 1 c) Statement 1 is correct. Statement 2 is incorrect. d) Statement 1 is incorrect. Statement 2 is correct.
|
IIT 2013 |
|
|
1220 |
Find all solutions of  a)  b)  c)  d) 
Find all solutions of  a)  b)  c)  d) 
|
IIT 1983 |
|
|
1221 |
Multiple choices Which of the following functions are continuous on (0, π) a) tanx b)  c)  d) 
Multiple choices Which of the following functions are continuous on (0, π) a) tanx b)  c)  d) 
|
IIT 1991 |
|
|
1222 |
One or more than one correct option If the normals of the parabola y2 = 4x drawn at the end points of the latus rectum are tangents to the circle (x − 3)2 + (y + 2)2 = r2 then the value of r2 is a) 4 b) 1 c) 2 d) 0
One or more than one correct option If the normals of the parabola y2 = 4x drawn at the end points of the latus rectum are tangents to the circle (x − 3)2 + (y + 2)2 = r2 then the value of r2 is a) 4 b) 1 c) 2 d) 0
|
IIT 2015 |
|
|
1223 |
Multiple choices Let for every real number x then a) h (x) is continuous for all x b) h is differentiable for all x c) for all x > 1 d) h is not differentiable for two values of x
Multiple choices Let for every real number x then a) h (x) is continuous for all x b) h is differentiable for all x c) for all x > 1 d) h is not differentiable for two values of x
|
IIT 1998 |
|
|
1224 |
Number of divisors of the form 4n + 2(n ≥ 0) of integer 240 is a) 4 b) 8 c) 10 d) 3
Number of divisors of the form 4n + 2(n ≥ 0) of integer 240 is a) 4 b) 8 c) 10 d) 3
|
IIT 1998 |
|
|
1225 |
The smallest positive root of the equation tan x – x = 0 lies in a)  b)  c)  d)  e) None of these
The smallest positive root of the equation tan x – x = 0 lies in a)  b)  c)  d)  e) None of these
|
IIT 1987 |
|