|
1201 |
Let the complex numbers are vertices of an equilateral triangle. If be the circumcentre of the triangle, then prove that 
|
IIT 1981 |
|
|
1202 |
A two metre long object is fired vertically upwards from the mid-point of two locations A and B, 8 metres apart. The speed of the object after t seconds is given by metres per second. Let α and β be the angles subtended by the objects A and B respectively after one and two seconds. Find the value of cos(α − β). a)  b)  c)  d) 
A two metre long object is fired vertically upwards from the mid-point of two locations A and B, 8 metres apart. The speed of the object after t seconds is given by metres per second. Let α and β be the angles subtended by the objects A and B respectively after one and two seconds. Find the value of cos(α − β). a)  b)  c)  d) 
|
IIT 1989 |
|
|
1203 |
The point (α, β, γ) lies on the plane . Let a = . . . . .
The point (α, β, γ) lies on the plane . Let a = . . . . .
|
IIT 2006 |
|
|
1204 |
Investigate for maxima and minima the function a) Local maximum at x = 1, 7/5, 2 b) Local minimum at x = 1, 7/5, 2 c) Local maximum at x = 1, 2. Local minimum at x = 7/5 d) Local maximum at x = 1. Local minimum at x = 7/5
Investigate for maxima and minima the function a) Local maximum at x = 1, 7/5, 2 b) Local minimum at x = 1, 7/5, 2 c) Local maximum at x = 1, 2. Local minimum at x = 7/5 d) Local maximum at x = 1. Local minimum at x = 7/5
|
IIT 1988 |
|
|
1205 |
Sides a, b, c of a triangle ABC are in arithmetic progression and then
Sides a, b, c of a triangle ABC are in arithmetic progression and then
|
IIT 2006 |
|
|
1206 |
A window of perimeter (including the base of the arch) is in the form of a rectangle surmounted by a semicircle. The semi-circular portion is fitted with coloured glass while the rectangular part is fitted with clear glass. The clear glass transmits three times as much light per square meter as the coloured glass. What is the ratio for the sides of the rectangle so that the window transmits the maximum light? a)  b)  c)  d) 
A window of perimeter (including the base of the arch) is in the form of a rectangle surmounted by a semicircle. The semi-circular portion is fitted with coloured glass while the rectangular part is fitted with clear glass. The clear glass transmits three times as much light per square meter as the coloured glass. What is the ratio for the sides of the rectangle so that the window transmits the maximum light? a)  b)  c)  d) 
|
IIT 1991 |
|
|
1207 |
Let be a line in the complex plane where is the complex conjugate of b. If a point is the deflection of a point through the line, show that .
|
IIT 1997 |
|
|
1208 |
Let  Find all possible values of b such that f(x) has the smallest value at x = 1. a) (−2, ∞) b) (−2, −1) c) (1, ∞) d) (−2, −1) ∪ (1, ∞)
Let  Find all possible values of b such that f(x) has the smallest value at x = 1. a) (−2, ∞) b) (−2, −1) c) (1, ∞) d) (−2, −1) ∪ (1, ∞)
|
IIT 1993 |
|
|
1209 |
Use mathematical induction for to prove that Im = mπ, m = 0, 1, 2 . . . .
Use mathematical induction for to prove that Im = mπ, m = 0, 1, 2 . . . .
|
IIT 1995 |
|
|
1210 |
Determine the points of maxima and minima of the function where b ≥ 0 is a constant. a) Minima at x = x1, maxima at x = x2 b) Minima at x = x2, maxima at x = x1 c) Minima at x = x1, x2, no maxima d) Maxima at x =x1, x2, no minima where x1 = and x2 =
Determine the points of maxima and minima of the function where b ≥ 0 is a constant. a) Minima at x = x1, maxima at x = x2 b) Minima at x = x2, maxima at x = x1 c) Minima at x = x1, x2, no maxima d) Maxima at x =x1, x2, no minima where x1 = and x2 =
|
IIT 1996 |
|
|
1211 |
Consider the circle x2 + y2 = 9 and the parabola y2 = 8x. They intersect P and Q in the first and fourth quadrants respectively. Tangents to the circle at P and Q intersect the X–axis at R and tangents to the parabola at P and Q intersect the X- axis at S. The radius of the circum circle of △PRS is a) 5 b)  c) 3 d) 
Consider the circle x2 + y2 = 9 and the parabola y2 = 8x. They intersect P and Q in the first and fourth quadrants respectively. Tangents to the circle at P and Q intersect the X–axis at R and tangents to the parabola at P and Q intersect the X- axis at S. The radius of the circum circle of △PRS is a) 5 b)  c) 3 d) 
|
IIT 2007 |
|
|
1212 |
ABCD is a rhombus. The diagonals AC and BD intersect at the point M and satisfy BD = 2AC. If the points D and M represent the complex numbers 1 + i and (2 – i) respectively then find the complex number x + iy represented by A. a)  b)  c)  d) 
ABCD is a rhombus. The diagonals AC and BD intersect at the point M and satisfy BD = 2AC. If the points D and M represent the complex numbers 1 + i and (2 – i) respectively then find the complex number x + iy represented by A. a)  b)  c)  d) 
|
IIT 1993 |
|
|
1213 |
Find all possible values of b > 0, so that the area of the bounded region enclosed between the parabolas and is maximum. a) b = 1 b) b ≥ 1 c) b ≤ 1 d) 0 < b < 1
Find all possible values of b > 0, so that the area of the bounded region enclosed between the parabolas and is maximum. a) b = 1 b) b ≥ 1 c) b ≤ 1 d) 0 < b < 1
|
IIT 1997 |
|
|
1214 |
Let f(x) = sinx and g(x) = ln|x|. If the ranges of the composition function fog and gof are R1 and R2 respectively then a)  b) ,  c)  d) 
Let f(x) = sinx and g(x) = ln|x|. If the ranges of the composition function fog and gof are R1 and R2 respectively then a)  b) ,  c)  d) 
|
IIT 1994 |
|
|
1215 |
Let C1 and C2 be the graph of the function y = x2 and y = 2x respectively. Let C3 be the graph of the function y = f (x), 0 ≤ x ≤ 1, f (0) = 0. Consider a point P on C1. Let the lines through P, parallel to the axes meet C2 and C3 at Q and R respectively (see figure). If for every position of P (on C1) the area of the shaded regions OPQ and OPR are equal, determine the function f(x).  a) x2 – 1 b) x3 – 1 c) x3 – x2 d) 1 + x2 + x3
Let C1 and C2 be the graph of the function y = x2 and y = 2x respectively. Let C3 be the graph of the function y = f (x), 0 ≤ x ≤ 1, f (0) = 0. Consider a point P on C1. Let the lines through P, parallel to the axes meet C2 and C3 at Q and R respectively (see figure). If for every position of P (on C1) the area of the shaded regions OPQ and OPR are equal, determine the function f(x).  a) x2 – 1 b) x3 – 1 c) x3 – x2 d) 1 + x2 + x3
|
IIT 1998 |
|
|
1216 |
A hemispherical tank of radius 2 meters is initially full of water and has an outlet of 12cm2 cross section area at the bottom. The outlet is opened at some instant. The flow through the outlet is according to the law where g(t) and h(t) are respectively the velocity of the flow through the outlet and the height of the water level above the outlet at the time t, and g is the acceleration due to gravity. Find the time it takes to empty the tank. (Hint: Form a differential equation by relating the decrease of water level to the outflow). a)  b)  c)  d) 
A hemispherical tank of radius 2 meters is initially full of water and has an outlet of 12cm2 cross section area at the bottom. The outlet is opened at some instant. The flow through the outlet is according to the law where g(t) and h(t) are respectively the velocity of the flow through the outlet and the height of the water level above the outlet at the time t, and g is the acceleration due to gravity. Find the time it takes to empty the tank. (Hint: Form a differential equation by relating the decrease of water level to the outflow). a)  b)  c)  d) 
|
IIT 2001 |
|
|
1217 |
Let P be a point on the ellipse . Let the line parallel to Y–axis passing through P meets the circle at the point Q such that P and Q are on the same side of the X–axis. For two positive real numbers r and s find the locus of the point R on PQ such that PˆR : RˆQ = r : s and P varies over the ellipse.
Let P be a point on the ellipse . Let the line parallel to Y–axis passing through P meets the circle at the point Q such that P and Q are on the same side of the X–axis. For two positive real numbers r and s find the locus of the point R on PQ such that PˆR : RˆQ = r : s and P varies over the ellipse.
|
IIT 2001 |
|
|
1218 |
Find the area bounded by the curves x2 = y, x2 = − y and y2 = 4x – 3 a) 1 b) 3 c) 1/3 d) 1/9
Find the area bounded by the curves x2 = y, x2 = − y and y2 = 4x – 3 a) 1 b) 3 c) 1/3 d) 1/9
|
IIT 2005 |
|
|
1219 |
Let E = {1, 2, 3, 4} and F = {1, 2}, then the number of onto functions from E to F is a) 14 b) 16 c) 12 d) 8
Let E = {1, 2, 3, 4} and F = {1, 2}, then the number of onto functions from E to F is a) 14 b) 16 c) 12 d) 8
|
IIT 2001 |
|
|
1220 |
For a twice differentiable function f(x), g(x) is defined as If for a < b < c < d < e, f(a) = 0, f(b) = 2, f(c) = − 1, f(d) = 2, f(e) = 0 then find the maximum number of zeros of g(x). a) 1 b) 2 c) 3 d) 6
For a twice differentiable function f(x), g(x) is defined as If for a < b < c < d < e, f(a) = 0, f(b) = 2, f(c) = − 1, f(d) = 2, f(e) = 0 then find the maximum number of zeros of g(x). a) 1 b) 2 c) 3 d) 6
|
IIT 2006 |
|
|
1221 |
Find the equation of the normal to the curve
Find the equation of the normal to the curve
|
IIT 1993 |
|
|
1222 |
The larger of cos (lnθ) and ln (cosθ) if is a) cos(lnθ) b) ln(cosθ)
The larger of cos (lnθ) and ln (cosθ) if is a) cos(lnθ) b) ln(cosθ)
|
IIT 1983 |
|
|
1223 |
For any real t, , is a point on the hyperbola x2 – y2 = 1. Find the area bounded by the hyperbola and the line joining the centre to the points corresponding to t1 and –t1.
For any real t, , is a point on the hyperbola x2 – y2 = 1. Find the area bounded by the hyperbola and the line joining the centre to the points corresponding to t1 and –t1.
|
IIT 1982 |
|
|
1224 |
The integral is equal to a) b) c) d)
The integral is equal to a) b) c) d)
|
IIT 2014 |
|
|
1225 |
X and Y are two sets and f : X → Y. If then the true statement is a)  b)  c) ,  d) 
X and Y are two sets and f : X → Y. If then the true statement is a)  b)  c) ,  d) 
|
IIT 2005 |
|