All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1201

Let y(x) be the solution of the differential equation (xlnx)dydx+y=2xlnx,(x1)

. Given that y = 1 when x = 1, then y(e) is equal to

a) e

b) 0

c) 2

d) 2e

Let y(x) be the solution of the differential equation (xlnx)dydx+y=2xlnx,(x1)

. Given that y = 1 when x = 1, then y(e) is equal to

a) e

b) 0

c) 2

d) 2e

IIT 2015
1202

If Cr stands for  then the sum of the series
 
where n is a positive integer, is equal to

a) 0

b) (−)n/2(n + 1)

c) (−)n/2 (n + 2)

d) None of these

If Cr stands for  then the sum of the series
 
where n is a positive integer, is equal to

a) 0

b) (−)n/2(n + 1)

c) (−)n/2 (n + 2)

d) None of these

IIT 1986
1203

Let T > 0 be a fixed real number. Suppose f is a continuous function such that for all x  ℝ, f(x + T) = f(x). If  then the value of  is

a)

b)

c) 3I

d) 6I

Let T > 0 be a fixed real number. Suppose f is a continuous function such that for all x  ℝ, f(x + T) = f(x). If  then the value of  is

a)

b)

c) 3I

d) 6I

IIT 2002
1204

One or more than one correct options

If y(x) satisfies the differential equation y′ − ytanx = 2xsecx and y(0) = 0, then

a) y(π4)=π282

b) y(π4)=π218

c) y(π3)=π29

d) y(π3)=4π3+2π233

One or more than one correct options

If y(x) satisfies the differential equation y′ − ytanx = 2xsecx and y(0) = 0, then

a) y(π4)=π282

b) y(π4)=π218

c) y(π3)=π29

d) y(π3)=4π3+2π233

IIT 2012
1205

The sum if p > q is maximum when m is

a) 5

b) 10

c) 15

d) 20

The sum if p > q is maximum when m is

a) 5

b) 10

c) 15

d) 20

IIT 2002
1206

At present a firm is manufacturing 2000 items. It is estimated that the rate of change of production P with respect to additional number of workers x is given by dPdx=10012x

. If the firm employs 25 more workers then the new level of production of items is

a) 2500

b) 3000

c) 3500

d) 4500

At present a firm is manufacturing 2000 items. It is estimated that the rate of change of production P with respect to additional number of workers x is given by dPdx=10012x

. If the firm employs 25 more workers then the new level of production of items is

a) 2500

b) 3000

c) 3500

d) 4500

IIT 2013
1207

If a, b, c; u, v, w are complex numbers representing the vertices of two triangles such that c = (1 − r)a + rb, w = (1 − r)u + rv where r is a complex number. The two triangles

a) have the same area

b) are similar

c) are congruent

d) none of these

If a, b, c; u, v, w are complex numbers representing the vertices of two triangles such that c = (1 − r)a + rb, w = (1 − r)u + rv where r is a complex number. The two triangles

a) have the same area

b) are similar

c) are congruent

d) none of these

IIT 1985
1208

Prove that

 

Prove that

 

IIT 1979
1209

The question contains Statement – 1(assertion) and Statement – 2 (reason). Let f (x) = 2 + cosx for all real x.

Statement 1: For each real t, there exists a point c in [t, t + π] such that  because

Statement 2: f (t) = f[t, t + 2π] for each real t

a) Statement 1 and 2 are true. Statement 2 is a correct explanation of Statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation of Statement 1.

c) Statement 1 is true and Statement 2 is false.

d) Statement 1 is false. Statement 2 is true.

The question contains Statement – 1(assertion) and Statement – 2 (reason). Let f (x) = 2 + cosx for all real x.

Statement 1: For each real t, there exists a point c in [t, t + π] such that  because

Statement 2: f (t) = f[t, t + 2π] for each real t

a) Statement 1 and 2 are true. Statement 2 is a correct explanation of Statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation of Statement 1.

c) Statement 1 is true and Statement 2 is false.

d) Statement 1 is false. Statement 2 is true.

IIT 2007
1210

Let f(x) = (1 – x)2 sin2x + x2 and g(x)=1x(2(t1)t+1lnt)f(t)dt

Which of the following is true?

a) g is increasing on (1, ∞)

b) g is decreasing on (1, ∞)

c) g is increasing on (1, 2) and decreasing on (2, ∞)

d) g is decreasing on (1, 2) and increasing on (2, ∞)

Let f(x) = (1 – x)2 sin2x + x2 and g(x)=1x(2(t1)t+1lnt)f(t)dt

Which of the following is true?

a) g is increasing on (1, ∞)

b) g is decreasing on (1, ∞)

c) g is increasing on (1, 2) and decreasing on (2, ∞)

d) g is decreasing on (1, 2) and increasing on (2, ∞)

IIT 2013
1211

Use mathematical induction to prove: If n is an odd positive integer
then  is divisible by 24.

Use mathematical induction to prove: If n is an odd positive integer
then  is divisible by 24.

IIT 1983
1212

Let PS is the median of the triangle with vertices P(2, 2), Q(6, −1) and R(7, 3), then the equation of the line passing through (1, −1) and parallel to PS is

a) 4x – 7y – 11 = 0

b) 2x + 9y + 7 = 0

c) 4x + 7y + 3 = 0

d) 2x – 9y – 11 = 0

Let PS is the median of the triangle with vertices P(2, 2), Q(6, −1) and R(7, 3), then the equation of the line passing through (1, −1) and parallel to PS is

a) 4x – 7y – 11 = 0

b) 2x + 9y + 7 = 0

c) 4x + 7y + 3 = 0

d) 2x – 9y – 11 = 0

IIT 2014
1213

One or more than one correct option

For a > b > c > 0, the distance between (1, 1) and the point of intersection of the lines ax + by + c = 0 and bx + ay + c = 0 is less than 22

, then

a) a + b – c > 0

b) a − b + c < 0

c) a − b + c > 0

d) a + b – c < 0

One or more than one correct option

For a > b > c > 0, the distance between (1, 1) and the point of intersection of the lines ax + by + c = 0 and bx + ay + c = 0 is less than 22

, then

a) a + b – c > 0

b) a − b + c < 0

c) a − b + c > 0

d) a + b – c < 0

IIT 2014
1214

Using mathematical induction, prove that
 
m, n, k are positive integers and  for p < q

Using mathematical induction, prove that
 
m, n, k are positive integers and  for p < q

IIT 1989
1215

If one of the diameters of the circle, given by the equation x2 + y2 – 4x + 6y – 12 = 0 is a chord of a circle S whose centre is at (−3, 2), then the radius of S is

a) 52

b) 53

c) 5

d) 10

If one of the diameters of the circle, given by the equation x2 + y2 – 4x + 6y – 12 = 0 is a chord of a circle S whose centre is at (−3, 2), then the radius of S is

a) 52

b) 53

c) 5

d) 10

IIT 2016
1216

If  for all k ≥ n then show that

If  for all k ≥ n then show that

IIT 1992
1217

The function  (where [y] is the greatest integer less than or equal to y) is discontinuous at

a) All integers

b) All integers except 0 and 1

c) All integers except 0

d) All integers except 1

The function  (where [y] is the greatest integer less than or equal to y) is discontinuous at

a) All integers

b) All integers except 0 and 1

c) All integers except 0

d) All integers except 1

IIT 1999
1218

If  are three non-coplanar unit vectors and α, β, γ are the angles between  , v and w, w and u respectively and x, y and z are unit vectors along the bisector of the angles α, β, γ respectively. Prove that
  

If  are three non-coplanar unit vectors and α, β, γ are the angles between  , v and w, w and u respectively and x, y and z are unit vectors along the bisector of the angles α, β, γ respectively. Prove that
  

IIT 2003
1219

For how many values of p, the circlex2 + y2 + 2x + 4y – p = 0 and the coordinate axis have exactly three common points

a) 0

b) 1

c) 2

d) 3

For how many values of p, the circlex2 + y2 + 2x + 4y – p = 0 and the coordinate axis have exactly three common points

a) 0

b) 1

c) 2

d) 3

IIT 2014
1220

If x is not an integral multiple of 2π use mathematical induction to prove that
 

If x is not an integral multiple of 2π use mathematical induction to prove that
 

IIT 1994
1221

A circle passing through (1, −2) and touching the axis of X at (3, 0) also passes through the point

a) (−5, 2)

b) (2, −5)

c) (5, −2)

d) (−2, 5)

A circle passing through (1, −2) and touching the axis of X at (3, 0) also passes through the point

a) (−5, 2)

b) (2, −5)

c) (5, −2)

d) (−2, 5)

IIT 2013
1222

The circles  and  intersect each other in distinct points if

a) r < 2

b) r > 8

c) 2 < r < 8

d) 2 ≤ r ≤ 8

The circles  and  intersect each other in distinct points if

a) r < 2

b) r > 8

c) 2 < r < 8

d) 2 ≤ r ≤ 8

IIT 1994
1223

Prove by induction that
Pn = Aαn + Bβn for all n ≥ 1
Where α and β are roots of the quadratic equation
x2 – (1 – P) x – P (1 – P) = 0,
P1 = 1, P2 = 1 – P2, .  .  .,
Pn = (1 – P) Pn – 1 + P (1 – P) Pn – 2  n ≥ 3,
and ,

Prove by induction that
Pn = Aαn + Bβn for all n ≥ 1
Where α and β are roots of the quadratic equation
x2 – (1 – P) x – P (1 – P) = 0,
P1 = 1, P2 = 1 – P2, .  .  .,
Pn = (1 – P) Pn – 1 + P (1 – P) Pn – 2  n ≥ 3,
and ,

IIT 2000
1224

Let P be a point on the parabola y2 = 8x which is at a minimum distance from the centre C of the circle x2 + (y + 6)2 = 1. Then the equation of the circle passing through C and having its centre at P is

a) x2 + y2 – 4x + 8y + 12 = 0

b) x2 + y2 –x + 4y − 12 = 0

c) x2 + y2 –x + 2y − 24 = 0

d) x2 + y2 – 4x + 9y + 18 = 0

Let P be a point on the parabola y2 = 8x which is at a minimum distance from the centre C of the circle x2 + (y + 6)2 = 1. Then the equation of the circle passing through C and having its centre at P is

a) x2 + y2 – 4x + 8y + 12 = 0

b) x2 + y2 –x + 4y − 12 = 0

c) x2 + y2 –x + 2y − 24 = 0

d) x2 + y2 – 4x + 9y + 18 = 0

IIT 2016
1225

Let  then points where f (x) is not differentiable is (are)

a) 0

b) 1

c) ± 1

d) 0, ± 1

Let  then points where f (x) is not differentiable is (are)

a) 0

b) 1

c) ± 1

d) 0, ± 1

IIT 2005

Play Selected  Login to save this search...