All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1201

Let f(x) = (1 – x)2 sin2x + x2Consider the statementsStatement 1: There exists some x ∈ ℝ such that f(x) + 2x = 2(1 + x2)Statement 2: There exists some x ∈ ℝ such that 2f(x) + 1 = 2x(x + 1)

a) Both 1 and 2 are true

b) 1 is true and 2 is false

c) 1 is false and 2 is true

d) Both 1 and 2 are false

Let f(x) = (1 – x)2 sin2x + x2Consider the statementsStatement 1: There exists some x ∈ ℝ such that f(x) + 2x = 2(1 + x2)Statement 2: There exists some x ∈ ℝ such that 2f(x) + 1 = 2x(x + 1)

a) Both 1 and 2 are true

b) 1 is true and 2 is false

c) 1 is false and 2 is true

d) Both 1 and 2 are false

IIT 2013
1202

Let z and ω be two complex numbers such that |z| ≤ 1, |ω| ≤ 1 and   then z equals

a) 1 or i

b) i or –i

c) 1 or –1

d) i or –1

Let z and ω be two complex numbers such that |z| ≤ 1, |ω| ≤ 1 and   then z equals

a) 1 or i

b) i or –i

c) 1 or –1

d) i or –1

IIT 1995
1203

Given
 
 
Prove that
 

Given
 
 
Prove that
 

IIT 1984
1204

The coordinates of the in centre of the triangle that has the co ordinates of the mid points of its sides as (0, 1), (1, 1) and (1, 0) is

a) 2+2

b) 22

c) 1+2

d) 12

The coordinates of the in centre of the triangle that has the co ordinates of the mid points of its sides as (0, 1), (1, 1) and (1, 0) is

a) 2+2

b) 22

c) 1+2

d) 12

IIT 2013
1205

Using mathematical induction, prove that

 for n > 1

Using mathematical induction, prove that

 for n > 1

IIT 1986
1206

If f(x) =  then on the interval [0, π]

a) tan  and  are both continuous

b) tan  and  are both discontinuous

c) tan  and  are both continuous

d) tan  is continuous but  is not

If f(x) =  then on the interval [0, π]

a) tan  and  are both continuous

b) tan  and  are both discontinuous

c) tan  and  are both continuous

d) tan  is continuous but  is not

IIT 1989
1207

One or more than one correct option

A ray of light along x+3y=3

gets reflected upon reaching X- axis, the equation of the reflected ray is

a) y=x+3

b) 3y=x3

c) y=3x3

d) 3y=x1

One or more than one correct option

A ray of light along x+3y=3

gets reflected upon reaching X- axis, the equation of the reflected ray is

a) y=x+3

b) 3y=x3

c) y=3x3

d) 3y=x1

IIT 2013
1208

If  and  where 0 < x ≤1, then in this interval

a) Both f (x) and g (x) are increasing functions

b) Both f (x) and g (x) are decreasing functions

c) f (x) is an increasing function

d) g (x) is an increasing function

If  and  where 0 < x ≤1, then in this interval

a) Both f (x) and g (x) are increasing functions

b) Both f (x) and g (x) are decreasing functions

c) f (x) is an increasing function

d) g (x) is an increasing function

IIT 1997
1209

The number of common tangents to the circles x2 + y2 – 4x − 6y – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is

a) 1

b) 2

c) 3

d) 4

The number of common tangents to the circles x2 + y2 – 4x − 6y – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is

a) 1

b) 2

c) 3

d) 4

IIT 2015
1210

Let p ≥ 3 be an integer and α, β be the roots of x2 – (p + 1) x + 1 = 0. Using mathematical induction show that αn + βn
i) is an integer
ii) and is not divisible by p.

Let p ≥ 3 be an integer and α, β be the roots of x2 – (p + 1) x + 1 = 0. Using mathematical induction show that αn + βn
i) is an integer
ii) and is not divisible by p.

IIT 1992
1211

The function  is not differentiable at

a) – 1

b) 0

c) 1

d) 2

The function  is not differentiable at

a) – 1

b) 0

c) 1

d) 2

IIT 1999
1212

One or more than one correct option

Let RS be a diameter of the circle x2 + y2 = 1 where S is the point (1, 0). Let P be a variable point (other than R and S) on the circle and the tangents to the circle at S and P meet at the point Q. The normal to the circle at P intersect a line drawn through Q parallel to RS at a point E. Then the locus of E passes through the point(s)

a) (13,13)

b) (14,12)

c) (13,13)

d) (14,12)

One or more than one correct option

Let RS be a diameter of the circle x2 + y2 = 1 where S is the point (1, 0). Let P be a variable point (other than R and S) on the circle and the tangents to the circle at S and P meet at the point Q. The normal to the circle at P intersect a line drawn through Q parallel to RS at a point E. Then the locus of E passes through the point(s)

a) (13,13)

b) (14,12)

c) (13,13)

d) (14,12)

IIT 2016
1213

If x is not an integral multiple of 2π use mathematical induction to prove that
 

If x is not an integral multiple of 2π use mathematical induction to prove that
 

IIT 1994
1214

A circle passing through (1, −2) and touching the axis of X at (3, 0) also passes through the point

a) (−5, 2)

b) (2, −5)

c) (5, −2)

d) (−2, 5)

A circle passing through (1, −2) and touching the axis of X at (3, 0) also passes through the point

a) (−5, 2)

b) (2, −5)

c) (5, −2)

d) (−2, 5)

IIT 2013
1215

The circles  and  intersect each other in distinct points if

a) r < 2

b) r > 8

c) 2 < r < 8

d) 2 ≤ r ≤ 8

The circles  and  intersect each other in distinct points if

a) r < 2

b) r > 8

c) 2 < r < 8

d) 2 ≤ r ≤ 8

IIT 1994
1216

Prove by induction that
Pn = Aαn + Bβn for all n ≥ 1
Where α and β are roots of the quadratic equation
x2 – (1 – P) x – P (1 – P) = 0,
P1 = 1, P2 = 1 – P2, .  .  .,
Pn = (1 – P) Pn – 1 + P (1 – P) Pn – 2  n ≥ 3,
and ,

Prove by induction that
Pn = Aαn + Bβn for all n ≥ 1
Where α and β are roots of the quadratic equation
x2 – (1 – P) x – P (1 – P) = 0,
P1 = 1, P2 = 1 – P2, .  .  .,
Pn = (1 – P) Pn – 1 + P (1 – P) Pn – 2  n ≥ 3,
and ,

IIT 2000
1217

Let O be the vertex and Q be any point on the parabola x2 = 8y. If the point P divides the line segment OQ^

internally in the ratio 1 : 3 then the locus of P is

a) x2 = y

b) y2 = x

c) y2 = 2x

d) x2 = 2y

Let O be the vertex and Q be any point on the parabola x2 = 8y. If the point P divides the line segment OQ^

internally in the ratio 1 : 3 then the locus of P is

a) x2 = y

b) y2 = x

c) y2 = 2x

d) x2 = 2y

IIT 2015
1218

Solve the following equation for x
 

a) −1

b)

c) 0

d) −1 and

Solve the following equation for x
 

a) −1

b)

c) 0

d) −1 and

IIT 1978
1219

If f is a differentiable function satisfying  for all n ≥ 1,

n  I then

a)

b)

c)

d)  is not necessarily zero

If f is a differentiable function satisfying  for all n ≥ 1,

n  I then

a)

b)

c)

d)  is not necessarily zero

IIT 2005
1220

Evaluate

Evaluate

IIT 2005
1221

Let S be the focus of the parabola y2 = 8x and PQ be the common chord of the circle x2 + y2 – 2x – 4y = 0 and the given parabola. The area of △QPS is

a) 2 sq. units

b) 4 sq. units

c) 6 sq. units

d) 8 sq. units

Let S be the focus of the parabola y2 = 8x and PQ be the common chord of the circle x2 + y2 – 2x – 4y = 0 and the given parabola. The area of △QPS is

a) 2 sq. units

b) 4 sq. units

c) 6 sq. units

d) 8 sq. units

IIT 2012
1222

Multiple choices

The function f (x) = 1 + |sinx| is

a) continuous nowhere

b) continuous everywhere

c) differentiable nowhere

d) not differentiable at x = 0

e) not differentiable at infinite number of points

Multiple choices

The function f (x) = 1 + |sinx| is

a) continuous nowhere

b) continuous everywhere

c) differentiable nowhere

d) not differentiable at x = 0

e) not differentiable at infinite number of points

IIT 1986
1223

Let a, r, s, t be non-zero real numbers. Let P(at2, 2at), Q, R(ar2, 2ar and S(as2, 2as) be distinct points on the parabola y2 = 4ax. Suppose PQ is the focal chord and QR and PK are parallel, where K is point (2a, 0)If st = 1 then the tangent at P and normal at S to the parabola meet at a point whose ordinate is

a) (t2+1)22t3

b) a(t2+1)22t3

c) a(t2+1)2r3

d) a(t2+2)2r3

Let a, r, s, t be non-zero real numbers. Let P(at2, 2at), Q, R(ar2, 2ar and S(as2, 2as) be distinct points on the parabola y2 = 4ax. Suppose PQ is the focal chord and QR and PK are parallel, where K is point (2a, 0)If st = 1 then the tangent at P and normal at S to the parabola meet at a point whose ordinate is

a) (t2+1)22t3

b) a(t2+1)22t3

c) a(t2+1)2r3

d) a(t2+2)2r3

IIT 2014
1224

The tangent PT and the normal PN of the parabola y2 = 4ax at the point P on it meet its axis at the points T and N respectively. The locus of the centroid of the triangle PTM is a parabola whose

a) Vertex is (2a3,0)

b) Directrix is x = 0

c) Latus rectum is 2a3

d) Focus is (a, 0)

The tangent PT and the normal PN of the parabola y2 = 4ax at the point P on it meet its axis at the points T and N respectively. The locus of the centroid of the triangle PTM is a parabola whose

a) Vertex is (2a3,0)

b) Directrix is x = 0

c) Latus rectum is 2a3

d) Focus is (a, 0)

IIT 2009
1225

Let f and g be increasing and decreasing functions, respectively from [0, ∞) to [0, ∞). Let h(x) =f(g(x)). If h(0) = 0 then h(x) – h(t) is

a) Always zero

b) Always negative

c) Always positive

d) Strictly increasing

e) None of these

Let f and g be increasing and decreasing functions, respectively from [0, ∞) to [0, ∞). Let h(x) =f(g(x)). If h(0) = 0 then h(x) – h(t) is

a) Always zero

b) Always negative

c) Always positive

d) Strictly increasing

e) None of these

IIT 1988

Play Selected  Login to save this search...