All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1201

In how many ways can a pack of 52 cards be divided into four groups of 13 cards each.

In how many ways can a pack of 52 cards be divided into four groups of 13 cards each.

IIT 1979
1202

In a triangle ABC, let ∠ C = . If r is the inradius and R is the circumradius of the triangle then 2(r+R) = ………….

a) a+b

b) b+c

c) c+a

d) a+b+c

In a triangle ABC, let ∠ C = . If r is the inradius and R is the circumradius of the triangle then 2(r+R) = ………….

a) a+b

b) b+c

c) c+a

d) a+b+c

IIT 2000
1203

Determine the values of x for which the following function fails to be continuous or differentiable.

 

Justify your answer.

a) f(x) is continuous and differentiable

b) f(x) is continuous everywhere but not differentiable at
x = 1, 2

c) f(x) is continuous everywhere but not differentiable at x = 2

d) f(x) is neither continuous nor differentiable at x = 1, 2

Determine the values of x for which the following function fails to be continuous or differentiable.

 

Justify your answer.

a) f(x) is continuous and differentiable

b) f(x) is continuous everywhere but not differentiable at
x = 1, 2

c) f(x) is continuous everywhere but not differentiable at x = 2

d) f(x) is neither continuous nor differentiable at x = 1, 2

IIT 1997
1204

Let  

And

where a and b are non-negative real numbers. Determine the composite function gof. If (gof)(x) is continuous for all real x, determine the values of a and b. Is gof differentiable at x = 0?

a) a = b = 0

b) a = 0, b = 1

c) a = 1, b = 0

d) a = b = 1

Let  

And

where a and b are non-negative real numbers. Determine the composite function gof. If (gof)(x) is continuous for all real x, determine the values of a and b. Is gof differentiable at x = 0?

a) a = b = 0

b) a = 0, b = 1

c) a = 1, b = 0

d) a = b = 1

IIT 2002
1205

Find the equation of the circle touching the line 2x + 3y + 1 = 0 at the point (1, −1) and is orthogonal to the circle which has the line segment having end points (0, −1) and (−2, 3) as diameter.

Find the equation of the circle touching the line 2x + 3y + 1 = 0 at the point (1, −1) and is orthogonal to the circle which has the line segment having end points (0, −1) and (−2, 3) as diameter.

IIT 2004
1206

Show that the value of  wherever defined

a) always lies between  and 3

b) never lies between  and 3

c) depends on the value of x

Show that the value of  wherever defined

a) always lies between  and 3

b) never lies between  and 3

c) depends on the value of x

IIT 1992
1207

                      

Show that f(x) is differentiable at the value of α = 1. Also,

a) b2 +c2 = 4

b) 4 b2  = 4 − c2  

c) 64 b2 = 4 − c2

d) 64 b2 = 4 + c2

                      

Show that f(x) is differentiable at the value of α = 1. Also,

a) b2 +c2 = 4

b) 4 b2  = 4 − c2  

c) 64 b2 = 4 − c2

d) 64 b2 = 4 + c2

IIT 2004
1208

The product of r consecutive natural numbers is divisible by r!

a) True

b) False

The product of r consecutive natural numbers is divisible by r!

a) True

b) False

IIT 1985
1209

The area bounded by the curve y = f(x), the X–axis and the ordinates x = 1, x = b is (b – 1) sin (3b + 4). Then f(x) is

a) (x – 1) cos (3x + b)

b) sin (3x + 4)

c) sin (3x + 4) + 3 (x – 1) cos (3x + 4)

d) none of these

The area bounded by the curve y = f(x), the X–axis and the ordinates x = 1, x = b is (b – 1) sin (3b + 4). Then f(x) is

a) (x – 1) cos (3x + b)

b) sin (3x + 4)

c) sin (3x + 4) + 3 (x – 1) cos (3x + 4)

d) none of these

IIT 2005
1210

The sum  where  equals

a) i

b) i – 1

c) – i

d) 0

The sum  where  equals

a) i

b) i – 1

c) – i

d) 0

IIT 1998
1211

Fill in the blank

The value of f (x) =  lies in the interval …………….

a)

b)

c)

d)

Fill in the blank

The value of f (x) =  lies in the interval …………….

a)

b)

c)

d)

IIT 1983
1212

Find the area bounded by the curve x2 = 4y and the straight line
x = 4y – 2.

a) 3/2

b) 3/4

c) 9/4

d) 9/8

Find the area bounded by the curve x2 = 4y and the straight line
x = 4y – 2.

a) 3/2

b) 3/4

c) 9/4

d) 9/8

IIT 1981
1213

If f(x) and g(x) are differentiable functions for 0 ≤ x ≤ 1 such that f(0) = 2, g(0) = 0, f(1) = 6, g(1) = 2 then show that there exists c satisfying 0 < c < 1 and .

a) 0 < c < 1 and

b) 0 < c < 1 and

c) 0 < c < 1 and

d) 0 < c < 1 and

If f(x) and g(x) are differentiable functions for 0 ≤ x ≤ 1 such that f(0) = 2, g(0) = 0, f(1) = 6, g(1) = 2 then show that there exists c satisfying 0 < c < 1 and .

a) 0 < c < 1 and

b) 0 < c < 1 and

c) 0 < c < 1 and

d) 0 < c < 1 and

IIT 1982
1214

Let a > 0, b > 0, c > 0 then both the roots of the equation  

a) are real and positive

b) have negative real parts

c) have positive real parts

d) none of these

Let a > 0, b > 0, c > 0 then both the roots of the equation  

a) are real and positive

b) have negative real parts

c) have positive real parts

d) none of these

IIT 1979
1215

If f(x) is a continuous function defined for 1 ≤ x ≤ 3. If f(x) takes rational values for all x and f(2) = 10 then f(1.5) = .  .  .  .

a) 2

b) 5

c) 10

d) 20

If f(x) is a continuous function defined for 1 ≤ x ≤ 3. If f(x) takes rational values for all x and f(2) = 10 then f(1.5) = .  .  .  .

a) 2

b) 5

c) 10

d) 20

IIT 1997
1216

If x, y, z are real and distinct then  is always

a) Non – negative

b) Non – positive

c) Zero

d) None of these

If x, y, z are real and distinct then  is always

a) Non – negative

b) Non – positive

c) Zero

d) None of these

IIT 2005
1217

A swimmer S is in the sea at a distance d km. from the closest point A on a straight shore. The house of the swimmer is on the shore at a distance L km. from A. He can swim at a speed of
u km/hour and walk at a speed of v km/hr (v > u). At what point on the shore should he land so that he reaches his house in the shortest possible time.

a)

b)

c)

d)

A swimmer S is in the sea at a distance d km. from the closest point A on a straight shore. The house of the swimmer is on the shore at a distance L km. from A. He can swim at a speed of
u km/hour and walk at a speed of v km/hr (v > u). At what point on the shore should he land so that he reaches his house in the shortest possible time.

a)

b)

c)

d)

IIT 1983
1218

Sketch the region bounded by the curves
 and y = |x – 1|
and find its area.

a)

b)

c)

d) 5π + 2

Sketch the region bounded by the curves
 and y = |x – 1|
and find its area.

a)

b)

c)

d) 5π + 2

IIT 1985
1219

Tangents are drawn from the point (17, 7) to the circle .
Statement 1 – The tangents are mutually perpendicular, because

Statement 2 – The locus of points from which mutually perpendicular tangents are drawn to the given circle is .

The question contains statement – 1 (assertion) and statement 2 (reason). Of these statements mark correct choice if

a) Statement 1 and 2 are true. Statement 2 is a correct explanation for statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation for statement 1.

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true

Tangents are drawn from the point (17, 7) to the circle .
Statement 1 – The tangents are mutually perpendicular, because

Statement 2 – The locus of points from which mutually perpendicular tangents are drawn to the given circle is .

The question contains statement – 1 (assertion) and statement 2 (reason). Of these statements mark correct choice if

a) Statement 1 and 2 are true. Statement 2 is a correct explanation for statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation for statement 1.

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true

IIT 2007
1220

Let  be the vertices of the triangle. A parallelogram AFDE is drawn with the vertices D, E and F on the line segments BC, CA and AB respectively. Using calculus find the area of the parallelogram.

a)  

b)  

c)  

d)  

Let  be the vertices of the triangle. A parallelogram AFDE is drawn with the vertices D, E and F on the line segments BC, CA and AB respectively. Using calculus find the area of the parallelogram.

a)  

b)  

c)  

d)  

IIT 1986
1221

Two rays in the first quadrant x + y = |a| and ax – y = 1 intersect each other in the interval a ε (a0, ∞). The value of a0 is

Two rays in the first quadrant x + y = |a| and ax – y = 1 intersect each other in the interval a ε (a0, ∞). The value of a0 is

IIT 2006
1222

Find the area of the region bounded by the curve C: y = tanx, tangent drawn to C at  and the X–axis.

a) ln2 – 1

b)

c)

d)

Find the area of the region bounded by the curve C: y = tanx, tangent drawn to C at  and the X–axis.

a) ln2 – 1

b)

c)

d)

IIT 1988
1223

then tan t =

then tan t =

IIT 2006
1224

Sketch the curves and identify the region bounded by
 

Sketch the curves and identify the region bounded by
 

IIT 1991
1225

Consider the following linear equations
ax + by + cz = 0
bx + cy + az = 0
cx + ay + bz = 0
Match the statements/expressions in column 1 with column 2

Column 1

Column2

i. a + b + c ≠ 0 and a2 + b2 + c2 = ab + bc + ca

A. Equations represent planes meeting at only one single point

ii. a + b + c = 0 and a2 + b2 + c2 ≠ ab + bc + ca

B. The equations represent the line x = y = z

iii. a + b + c ≠ 0 and a2 + b2 + c2 ≠ ab + bc + ca

C. The equations represent identical planes

iv. a + b + c = 0 and a2 + b2 + c2 = ab + bc + ca

D.The equations represent the whole of the three dimensional space

Consider the following linear equations
ax + by + cz = 0
bx + cy + az = 0
cx + ay + bz = 0
Match the statements/expressions in column 1 with column 2

Column 1

Column2

i. a + b + c ≠ 0 and a2 + b2 + c2 = ab + bc + ca

A. Equations represent planes meeting at only one single point

ii. a + b + c = 0 and a2 + b2 + c2 ≠ ab + bc + ca

B. The equations represent the line x = y = z

iii. a + b + c ≠ 0 and a2 + b2 + c2 ≠ ab + bc + ca

C. The equations represent identical planes

iv. a + b + c = 0 and a2 + b2 + c2 = ab + bc + ca

D.The equations represent the whole of the three dimensional space

IIT 2007

Play Selected  Login to save this search...