All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1201

Solve

Solve

IIT 1978
1202

 for every 0 < α, β < 2.

 for every 0 < α, β < 2.

IIT 2003
1203

Let (x, y) be any point on the parabola y2 = 4x. Let P be the point that divides the line segment from (0, 0) to (x, y) in the ratio of 1 : 3. Then the locus of P is

a) x2 = y

b) y2 = 2x

c) y2 = x

d) x2 = 2y

Let (x, y) be any point on the parabola y2 = 4x. Let P be the point that divides the line segment from (0, 0) to (x, y) in the ratio of 1 : 3. Then the locus of P is

a) x2 = y

b) y2 = 2x

c) y2 = x

d) x2 = 2y

IIT 2011
1204

The value of  where x > 0 is

a) 0

b) – 1

c) 1

d) 2

The value of  where x > 0 is

a) 0

b) – 1

c) 1

d) 2

IIT 2006
1205

The value of

a) 5050

b) 5051

c) 100

d) 101

The value of

a) 5050

b) 5051

c) 100

d) 101

IIT 2006
1206

Let the curve C be the mirror image of the parabola y2 = 4x with respect to the line x + y + 4 = 0. If A and B are points of intersection of C with the line y = −5 then the distance between A and B is . . .?

Let the curve C be the mirror image of the parabola y2 = 4x with respect to the line x + y + 4 = 0. If A and B are points of intersection of C with the line y = −5 then the distance between A and B is . . .?

IIT 2015
1207

Consider the parabola y2 = 8x. Let △1 be the area of the triangle formed by the end points of its latus rectum and the point P(12,2)

on the parabola and △2 be the area of the triangle formed by drawing tangent at P and the end points of the latus rectum. Then 12 is

Consider the parabola y2 = 8x. Let △1 be the area of the triangle formed by the end points of its latus rectum and the point P(12,2)

on the parabola and △2 be the area of the triangle formed by drawing tangent at P and the end points of the latus rectum. Then 12 is

IIT 2011
1208

Multiple choices

Let g (x) = x f (x), where   at x = 0

a) g is  but  is not continuous

b) g is  while f is not

c) f and g are both differentiable

d) g is  and  is continuous

Multiple choices

Let g (x) = x f (x), where   at x = 0

a) g is  but  is not continuous

b) g is  while f is not

c) f and g are both differentiable

d) g is  and  is continuous

IIT 1994
1209

A five digit number divisible by 3 is formed using the numerals 0, 1, 2, 3, 4, and 5 without repetition. Total number of ways this can be done is

a) At least 30

b) At most 20

c) Exactly 25

d) None of these

A five digit number divisible by 3 is formed using the numerals 0, 1, 2, 3, 4, and 5 without repetition. Total number of ways this can be done is

a) At least 30

b) At most 20

c) Exactly 25

d) None of these

IIT 1989
1210

A rectangle with sides (2m – 1) and (2n – 1) is divided into squares of unit length by drawing parallel lines. Then the number of rectangles possible with odd side lengths is

a) mn (m + 1)(n + 1)

b)

c)

d)

A rectangle with sides (2m – 1) and (2n – 1) is divided into squares of unit length by drawing parallel lines. Then the number of rectangles possible with odd side lengths is

a) mn (m + 1)(n + 1)

b)

c)

d)

IIT 2005
1211

If the normal to the curve y = f(x) at the point (3, 4) makes an angle  with the positive X–axis then

a) – 1

b)

c)

d) 1

If the normal to the curve y = f(x) at the point (3, 4) makes an angle  with the positive X–axis then

a) – 1

b)

c)

d) 1

IIT 2000
1212

Find the interval in which ‘a’ lies for which the line y + x = 0 bisects the chord drawn from the point  to the circle

Find the interval in which ‘a’ lies for which the line y + x = 0 bisects the chord drawn from the point  to the circle

IIT 1996
1213

The points on the curve   where the tangent is vertical, is (are)

a)

b)

c)

d)

The points on the curve   where the tangent is vertical, is (are)

a)

b)

c)

d)

IIT 2002
1214

Let T1, T2 be two tangents drawn from (−2, 0) onto the circle C: x2 + y2 = 1. Determine the circle touching C and having T1, T2 as their pair of tangents. Further find the equation of all possible common tangents to the circles, when taken two at a time.

Let T1, T2 be two tangents drawn from (−2, 0) onto the circle C: x2 + y2 = 1. Determine the circle touching C and having T1, T2 as their pair of tangents. Further find the equation of all possible common tangents to the circles, when taken two at a time.

IIT 1999
1215

Let  for all real x and y. If   exists and  then find f(2)

a) – 1

b) 0

c) 1

d) 2

Let  for all real x and y. If   exists and  then find f(2)

a) – 1

b) 0

c) 1

d) 2

IIT 1995
1216

Let  and  where  are continuous functions. If A(t) and B(t) are non-zero vectors for all t and

A(0) =

 

then A(t) and b(t) are parallel for some t.

a) True

b) False

Let  and  where  are continuous functions. If A(t) and B(t) are non-zero vectors for all t and

A(0) =

 

then A(t) and b(t) are parallel for some t.

a) True

b) False

IIT 2001
1217

Let n be any positive integer. Prove that
For each non negative integer m ≤ n

Let n be any positive integer. Prove that
For each non negative integer m ≤ n

IIT 1999
1218

Find the centre and radius of the circle formed by all the points represented by  satisfying the relation  where α and β are complex numbers given by
 

Find the centre and radius of the circle formed by all the points represented by  satisfying the relation  where α and β are complex numbers given by
 

IIT 2004
1219

Using permutation or otherwise prove that    is an integer, where n is a positive integer.

Using permutation or otherwise prove that    is an integer, where n is a positive integer.

IIT 2004
1220

Three circles of radii 3, 4 and 5 units touch each other externally and tangents drawn at the points of contact intersect at P. Find the distance between P and the point of contact.

Three circles of radii 3, 4 and 5 units touch each other externally and tangents drawn at the points of contact intersect at P. Find the distance between P and the point of contact.

IIT 2005
1221

In ΔABC, D is the midpoint of BC. If AD is perpendicular to AC then .

a) True

b) False

In ΔABC, D is the midpoint of BC. If AD is perpendicular to AC then .

a) True

b) False

IIT 1980
1222

A function f : R  R where R is the set of real numbers is defined by f (x) = . Find the interval of values of α for which f is onto. Is the function one to one for α = 3? Justify your answer.

a) 2 ≤ α ≤ 14

b) α ≥ 2

c) α ≤ 14

d) none of the above

A function f : R  R where R is the set of real numbers is defined by f (x) = . Find the interval of values of α for which f is onto. Is the function one to one for α = 3? Justify your answer.

a) 2 ≤ α ≤ 14

b) α ≥ 2

c) α ≤ 14

d) none of the above

IIT 1996
1223

If f1 ( x ) and f2 ( x ) are defined by domains D1 and D2 respectively, then f1 ( x ) + f2 ( x ) is defined as on D1 D2.

a) True

b) False

If f1 ( x ) and f2 ( x ) are defined by domains D1 and D2 respectively, then f1 ( x ) + f2 ( x ) is defined as on D1 D2.

a) True

b) False

IIT 1988
1224

 

a) ln2

b) ln3

c) ln6

d) ln2 ln3

 

a) ln2

b) ln3

c) ln6

d) ln2 ln3

IIT 1980
1225

For all complex numbers satisfying  = 5, the minimum value of

a) 0

b) 2

c) 7

d) 17

For all complex numbers satisfying  = 5, the minimum value of

a) 0

b) 2

c) 7

d) 17

IIT 2002

Play Selected  Login to save this search...