All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1201

Let f: [−1, 2] → [0, ∞) be a continuous function such that f(x) = f(1 –x), Ɐ x ∈ [−1, 2]. If R1=12xf(x)dx

and R2 are the area of the region bounded by y = f(x), x = −1, x = 2 and the X- axis. Then

a) R1 = 2R2

b) R1 = 3R2

c) 2R1 = R2

d) 3R1 = R2

Let f: [−1, 2] → [0, ∞) be a continuous function such that f(x) = f(1 –x), Ɐ x ∈ [−1, 2]. If R1=12xf(x)dx

and R2 are the area of the region bounded by y = f(x), x = −1, x = 2 and the X- axis. Then

a) R1 = 2R2

b) R1 = 3R2

c) 2R1 = R2

d) 3R1 = R2

IIT 2011
1202

If (2+sinx)dydx+(y+1)cosx=0y(0)=1

, then y(π2) is equal to

a) 13

b) 23

c) 13

d) 43

If (2+sinx)dydx+(y+1)cosx=0y(0)=1

, then y(π2) is equal to

a) 13

b) 23

c) 13

d) 43

IIT 2017
1203

One or more than one correct option

Consider the family of circles whose centre lies on the straight line y = x. If the family of circles is represented by the differential equation Py′′ + Qy′ + 1 = 0 where P, Q are functions of x, y and y′ (wherey=dydx,y=d2ydx2)

, then which of the following statements is/are true?

a) P = y + x

b) P = y – x

c) P + Q = 1 – x + y + y′ + (y′)2

d) P − Q = x + y − y′ − (y′)2

One or more than one correct option

Consider the family of circles whose centre lies on the straight line y = x. If the family of circles is represented by the differential equation Py′′ + Qy′ + 1 = 0 where P, Q are functions of x, y and y′ (wherey=dydx,y=d2ydx2)

, then which of the following statements is/are true?

a) P = y + x

b) P = y – x

c) P + Q = 1 – x + y + y′ + (y′)2

d) P − Q = x + y − y′ − (y′)2

IIT 2015
1204

Find  at x = , when

 

a) 0

b) 1

c) – 1

d) 2

Find  at x = , when

 

a) 0

b) 1

c) – 1

d) 2

IIT 1991
1205

Let f : (0, ∞) → ℝ and  If  then f(4) equals

a)

b) 7

c) 4

d) 2

Let f : (0, ∞) → ℝ and  If  then f(4) equals

a)

b) 7

c) 4

d) 2

IIT 2001
1206

Let f:[12,1]R

(the set of all real numbers) be a positive, non-constant and differentiable function such that f(x)<2f(x) and f(12)=1 . Then the value of 1/21f(x)dx lies in the interval

a) (2e-1,2e)

b) (e1,2e-1)

c) (e12,e1)

d) (0,e12)

Let f:[12,1]R

(the set of all real numbers) be a positive, non-constant and differentiable function such that f(x)<2f(x) and f(12)=1 . Then the value of 1/21f(x)dx lies in the interval

a) (2e-1,2e)

b) (e1,2e-1)

c) (e12,e1)

d) (0,e12)

IIT 2013
1207

The smallest positive integer n for which  is

a) 8

b) 12

c) 12

d) None of these

The smallest positive integer n for which  is

a) 8

b) 12

c) 12

d) None of these

IIT 1980
1208

Let the population of rabbits arriving at time t be governed by the differential equation dp(t)dt=12p(t)200

. If p(0) = 100, then p(t) is equal to

a) 400 – 300et/2

b) 300 – 200e−t/2

c) 600 – 500et/2

d) 400 – 300e−t/2

Let the population of rabbits arriving at time t be governed by the differential equation dp(t)dt=12p(t)200

. If p(0) = 100, then p(t) is equal to

a) 400 – 300et/2

b) 300 – 200e−t/2

c) 600 – 500et/2

d) 400 – 300e−t/2

IIT 2014
1209

If z = x + iy and ω =  then |ω| =1 implies that in the complex plane

a) z lies on the imaginary axis

b) z lies on the real axis

c) z lies on unit circle

d) none of these

If z = x + iy and ω =  then |ω| =1 implies that in the complex plane

a) z lies on the imaginary axis

b) z lies on the real axis

c) z lies on unit circle

d) none of these

IIT 1983
1210

For a positive integer n, define
 then

a) a(100) ≤ 100

b) a(100) > 100

c) a(200) ≤ 100

d) a(200) > 100

For a positive integer n, define
 then

a) a(100) ≤ 100

b) a(100) > 100

c) a(200) ≤ 100

d) a(200) > 100

IIT 1999
1211

Let f:[0, 1] → ℝ (the set all real numbers)be a function. Suppose the function is twice differentiable, f(0) = f(1) = 0 and satisfiesf′′(x) – 2f′(x) + f(x) ≥ ex, x ∈ [0, 1]If the function e−x f(x) assumes its minimum in the interval [0, 1] at x=14

then which of the following is true?

a) f(x)<f(x),14<x<34

b) f(x)>f(x),0<x<14

c) f(x)<f(x),0<x<14

d) f(x)<f(x),34<x<1

Let f:[0, 1] → ℝ (the set all real numbers)be a function. Suppose the function is twice differentiable, f(0) = f(1) = 0 and satisfiesf′′(x) – 2f′(x) + f(x) ≥ ex, x ∈ [0, 1]If the function e−x f(x) assumes its minimum in the interval [0, 1] at x=14

then which of the following is true?

a) f(x)<f(x),14<x<34

b) f(x)>f(x),0<x<14

c) f(x)<f(x),0<x<14

d) f(x)<f(x),34<x<1

IIT 2013
1212

There exists a function f(x) satisfying f (0) = 1,  and

f (x) > 0 for all x and

a)   for all x

b)  

c)   for all x

d)   for all x

There exists a function f(x) satisfying f (0) = 1,  and

f (x) > 0 for all x and

a)   for all x

b)  

c)   for all x

d)   for all x

IIT 1982
1213

Let k be an integer such that the triangle with vertices (k, −3k), (5, k) and (−k, 2) has area 28 square units. Then the orthocentre of the triangle is at the point

a) (2,12)

b) (1,34)

c) (1,34)

d) (2,12)

Let k be an integer such that the triangle with vertices (k, −3k), (5, k) and (−k, 2) has area 28 square units. Then the orthocentre of the triangle is at the point

a) (2,12)

b) (1,34)

c) (1,34)

d) (2,12)

IIT 2017
1214

If p is a natural number then prove that pn + 1 + (p + 1)2n – 1 is divisible by p2 + p + 1 for every positive integer n.

If p is a natural number then prove that pn + 1 + (p + 1)2n – 1 is divisible by p2 + p + 1 for every positive integer n.

IIT 1984
1215

A straight line L through the point (3, −2) is inclined at an angle of 60° to the line 3x+y=1

. If the line L also intersects the X- axis then the equation of L is

a) y+3x+233=0

b) y3x+2+33=0

c) 3yx+3+23=0

d) 3y+x3+23=0

A straight line L through the point (3, −2) is inclined at an angle of 60° to the line 3x+y=1

. If the line L also intersects the X- axis then the equation of L is

a) y+3x+233=0

b) y3x+2+33=0

c) 3yx+3+23=0

d) 3y+x3+23=0

IIT 2011
1216

The orthocenter of the triangle formed by the lines
  lies in the quadrant number . . . . .

The orthocenter of the triangle formed by the lines
  lies in the quadrant number . . . . .

IIT 1985
1217

Prove by mathematical induction that
 for every positive integer n.

Prove by mathematical induction that
 for every positive integer n.

IIT 1987
1218

The sides of a rhombus are along the lines x – y + 1 = 0 and 7x – y – 5 = 0. If its diagonals intersect at (−1, −2) then which one of the following is a vertex of the rhombus?

a) (3,9)

b) (3,8)

c) (13,83)

d) (103,73)

The sides of a rhombus are along the lines x – y + 1 = 0 and 7x – y – 5 = 0. If its diagonals intersect at (−1, −2) then which one of the following is a vertex of the rhombus?

a) (3,9)

b) (3,8)

c) (13,83)

d) (103,73)

IIT 2016
1219

Let  and  intersect the line
 at P and Q respectively. Bisector of the acute angle between L1 and L2 intersects L3 in R.
Statement 1 – The ratio PR : RQ equals  because
Statement 2 – In any triangle, bisector of an angle divides the triangle into two similar triangles.
The question contains Statement 1(assertion) and Statement 2(reason). Of these statements, mark correct choice if

a) Statement 1 and 2 are true. Statement 2 is a correct explanation for statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation for statement 1.

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true.

Let  and  intersect the line
 at P and Q respectively. Bisector of the acute angle between L1 and L2 intersects L3 in R.
Statement 1 – The ratio PR : RQ equals  because
Statement 2 – In any triangle, bisector of an angle divides the triangle into two similar triangles.
The question contains Statement 1(assertion) and Statement 2(reason). Of these statements, mark correct choice if

a) Statement 1 and 2 are true. Statement 2 is a correct explanation for statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation for statement 1.

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true.

IIT 2007
1220

Prove that  is an integer for every positive integer.

Prove that  is an integer for every positive integer.

IIT 1990
1221

If f is a continuous function with  as |x| → ∞ then show that every line y = mx intersects the curve .

If f is a continuous function with  as |x| → ∞ then show that every line y = mx intersects the curve .

IIT 1991
1222

Show, by vector method, that the angular bisectors of a triangle are concurrent and find an expression for the position vector of point of concurrency in terms of position vectors of the vertices.

Show, by vector method, that the angular bisectors of a triangle are concurrent and find an expression for the position vector of point of concurrency in terms of position vectors of the vertices.

IIT 2001
1223

The C be a circle with the centre at (1, 1) and radius 1. If T is the circle centred at (0, k) passing through origin and touches the circle C externally, then the radius of T is equal to

a) 32

b) 32

c) 12

d) 14

The C be a circle with the centre at (1, 1) and radius 1. If T is the circle centred at (0, k) passing through origin and touches the circle C externally, then the radius of T is equal to

a) 32

b) 32

c) 12

d) 14

IIT 2014
1224

If AB is a diameter of a circle and C is any point on the circumference of the circle then

a) The area of ΔABC is maximum when it is isosceles

b) The area of ΔABC is minimum when it is isosceles

c) The perimeter of ΔABC is minimum when it is isosceles

d) None of these

If AB is a diameter of a circle and C is any point on the circumference of the circle then

a) The area of ΔABC is maximum when it is isosceles

b) The area of ΔABC is minimum when it is isosceles

c) The perimeter of ΔABC is minimum when it is isosceles

d) None of these

IIT 1983
1225

Let f : ℝ → ℝ be any function. Define g : ℝ → ℝ by g (x) = |f (x)| for all x. Then g is

a) Onto if f is onto

b) One to one if f is one to one

c) Continuous if f is continuous

d) Differentiable if f is differentiable

Let f : ℝ → ℝ be any function. Define g : ℝ → ℝ by g (x) = |f (x)| for all x. Then g is

a) Onto if f is onto

b) One to one if f is one to one

c) Continuous if f is continuous

d) Differentiable if f is differentiable

IIT 2000

Play Selected  Login to save this search...