|
1026 |
Express in the form A + iB a)  b)  c)  d) 
Express in the form A + iB a)  b)  c)  d) 
|
IIT 1979 |
|
|
1027 |
Find the area bounded by the curves a) 1/6 b) 1/3 c) π d) 
Find the area bounded by the curves a) 1/6 b) 1/3 c) π d) 
|
IIT 1986 |
|
|
1028 |
If the line x – 1 = 0 is the directrix of the parabola y2 – kx + 8 = 0, then one of the values of k is a)  b) 8 c) 4 d) 
If the line x – 1 = 0 is the directrix of the parabola y2 – kx + 8 = 0, then one of the values of k is a)  b) 8 c) 4 d) 
|
IIT 2000 |
|
|
1029 |
Find the area bounded by the curves x2 + y2 = 25, 4y = |4 – x2| and x = 0 above the X–axis. a)  b)  c)  d) 
Find the area bounded by the curves x2 + y2 = 25, 4y = |4 – x2| and x = 0 above the X–axis. a)  b)  c)  d) 
|
IIT 1987 |
|
|
1030 |
If sinA sinB sinC + cosA cosB = 1then the value of sinC is
If sinA sinB sinC + cosA cosB = 1then the value of sinC is
|
IIT 2006 |
|
|
1031 |
Let = 10 + 6i and . If z is a complex number such that argument of is then prove that .
|
IIT 1990 |
|
|
1032 |
Compute the area of the region bounded by the curves y = exlnx and  a)  b)  c)  d) 
Compute the area of the region bounded by the curves y = exlnx and  a)  b)  c)  d) 
|
IIT 1990 |
|
|
1033 |
A plane passes through (1, −2, 1) and is perpendicular to the two planes and The distance of the plane from the point (1, 2, 2) is.
A plane passes through (1, −2, 1) and is perpendicular to the two planes and The distance of the plane from the point (1, 2, 2) is.
|
IIT 2006 |
|
|
1034 |
What normal to the curve y = x2 forms the shortest normal? a)  b)  c)  d) y = x + 1
What normal to the curve y = x2 forms the shortest normal? a)  b)  c)  d) y = x + 1
|
IIT 1992 |
|
|
1035 |
(Multiple choices) The value of θ lying between θ = 0 and θ = and satisfying the equation = 0 are a)  b)  c)  d) 
(Multiple choices) The value of θ lying between θ = 0 and θ = and satisfying the equation = 0 are a)  b)  c)  d) 
|
IIT 1988 |
|
|
1036 |
Let a complex number α, α ≠ 1, be root of the equation where p and q are distinct primes. Show that either or , but not together.
|
IIT 2002 |
|
|
1037 |
The circle x2 + y2 = 1 cuts the X–axis at P and Q. Another circle with centre at Q and variable radius intersects the first circle at R above the X–axis and the line segment PQ at S. Find the maximum area of ΔQRS. a)  b)  c)  d) 
The circle x2 + y2 = 1 cuts the X–axis at P and Q. Another circle with centre at Q and variable radius intersects the first circle at R above the X–axis and the line segment PQ at S. Find the maximum area of ΔQRS. a)  b)  c)  d) 
|
IIT 1994 |
|
|
1038 |
From a point A common tangents are drawn to the circle and the parabola . Find the area of the quadrilateral formed by the common tangents drawn from A and the chords of contact of the circle and the parabola.
From a point A common tangents are drawn to the circle and the parabola . Find the area of the quadrilateral formed by the common tangents drawn from A and the chords of contact of the circle and the parabola.
|
IIT 1996 |
|
|
1039 |
True/False For the complex numbers and we write and then for all complex numbers z with we have . a) True b) False
|
IIT 1981 |
|
|
1040 |
Let  where a is a positive constant. Find the interval in which is increasing. a)  b)  c)  d) 
Let  where a is a positive constant. Find the interval in which is increasing. a)  b)  c)  d) 
|
IIT 1996 |
|
|
1041 |
Let S be a square of unit area. Consider any quadrilateral which has one vertex on each side of S. If a, b, c and d denote the lengths of the sides of the quadrilateral; prove that 2 ≤ a2 + b2 + c2 + d2 ≤ 4
Let S be a square of unit area. Consider any quadrilateral which has one vertex on each side of S. If a, b, c and d denote the lengths of the sides of the quadrilateral; prove that 2 ≤ a2 + b2 + c2 + d2 ≤ 4
|
IIT 1997 |
|
|
1042 |
The number of ordered pairs satisfying the equations is a) 4 b) 2 c) 0 d) 1
The number of ordered pairs satisfying the equations is a) 4 b) 2 c) 0 d) 1
|
IIT 2005 |
|
|
1043 |
Let O (0, 0), A(2, 0) and be the vertices of a triangle. Let R be the region consisting of all those points P inside ΔOAB which satisfies d(P, OA) ≤ d(P, OB) . d(P, AB), where d denotes the distance from the point to the corresponding line. Sketch the region R and find its area. a)  b)  c)  d) 
Let O (0, 0), A(2, 0) and be the vertices of a triangle. Let R be the region consisting of all those points P inside ΔOAB which satisfies d(P, OA) ≤ d(P, OB) . d(P, AB), where d denotes the distance from the point to the corresponding line. Sketch the region R and find its area. a)  b)  c)  d) 
|
IIT 1997 |
|
|
1044 |
Let f(x) be a continuous function given by Find the area of the region in the third quadrant bounded by the curve x = − 2y2 and y = f(x) lying on the left of the line 8x + 1 = 0. a) 192 b) 320 c) 761/192 d) 320/761
Let f(x) be a continuous function given by Find the area of the region in the third quadrant bounded by the curve x = − 2y2 and y = f(x) lying on the left of the line 8x + 1 = 0. a) 192 b) 320 c) 761/192 d) 320/761
|
IIT 1999 |
|
|
1045 |
Let d be the perpendicular distance from the centre of the ellipse to the tangent at a point P on the ellipse. Let F1 and F2 be the two focii of the ellipse, then show that 
Let d be the perpendicular distance from the centre of the ellipse to the tangent at a point P on the ellipse. Let F1 and F2 be the two focii of the ellipse, then show that 
|
IIT 1995 |
|
|
1046 |
Find the area of the region bounded by the curves y = x2, y = |2 – x2| and y = 2 which lies to the right of the line x = 1. a)  b)  c)  d) 
Find the area of the region bounded by the curves y = x2, y = |2 – x2| and y = 2 which lies to the right of the line x = 1. a)  b)  c)  d) 
|
IIT 2002 |
|
|
1047 |
Prove that in an ellipse the perpendicular from a focus upon a tangent and the line joining the centre of the ellipse to the point of contact meet on the corresponding directrix.
Prove that in an ellipse the perpendicular from a focus upon a tangent and the line joining the centre of the ellipse to the point of contact meet on the corresponding directrix.
|
IIT 2002 |
|
|
1048 |
A curve passing through the point has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of P from the X-axis. Determine the equation of the curve.
A curve passing through the point has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of P from the X-axis. Determine the equation of the curve.
|
IIT 1999 |
|
|
1049 |
Let f : ℝ → ℝ be any function. Define g : ℝ → ℝ by g(x) = |f(x)| for all x. Then g is a) Onto if f is onto b) One–one if f is one–one c) Continuous if f is continuous d) Differentiable if f is differentiable
Let f : ℝ → ℝ be any function. Define g : ℝ → ℝ by g(x) = |f(x)| for all x. Then g is a) Onto if f is onto b) One–one if f is one–one c) Continuous if f is continuous d) Differentiable if f is differentiable
|
IIT 2000 |
|
|
1050 |
f(x) is a differentiable function and g(x) is a double differentiable function such that If prove that there exists some c ε (−3, 3) such that .
|
IIT 2005 |
|