All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1026

Show that the sum of the first n terms of the series
12 + 2.22 + 32 + 2.42 + 52 + 2.62 + .  .  .
is  when n is even, and  when n is odd.

Show that the sum of the first n terms of the series
12 + 2.22 + 32 + 2.42 + 52 + 2.62 + .  .  .
is  when n is even, and  when n is odd.

IIT 1988
1027

Differentiate from first principles (or ab initio)

a) 2xcos(x2 + 1)

b) xcos(x2 + 1)

c) 2cosx(x2 + 1)

d) 2xcosx(x2 + 1) + sin(x2 + 1)

Differentiate from first principles (or ab initio)

a) 2xcos(x2 + 1)

b) xcos(x2 + 1)

c) 2cosx(x2 + 1)

d) 2xcosx(x2 + 1) + sin(x2 + 1)

IIT 1978
1028

One or more than one correct option

Let y(x) be a solution of the differential equation (1+ex)y+yex=1

. If y(0) = 2, then which of the following statements is/are true?

a) y(−4) = 0

b) y(−2) = 0

c) y(x) has a critical point in the interval (−1, 0)

d) y(x) has no critical point in the interval

One or more than one correct option

Let y(x) be a solution of the differential equation (1+ex)y+yex=1

. If y(0) = 2, then which of the following statements is/are true?

a) y(−4) = 0

b) y(−2) = 0

c) y(x) has a critical point in the interval (−1, 0)

d) y(x) has no critical point in the interval

IIT 2015
1029

An urn contains two white and two black balls. A ball is drawn at random. If it is white it is not replaced in the urn. Otherwise it is placed along with the other balls of the same colour. The process is repeated. Find the probability that the third ball drawn is black?

An urn contains two white and two black balls. A ball is drawn at random. If it is white it is not replaced in the urn. Otherwise it is placed along with the other balls of the same colour. The process is repeated. Find the probability that the third ball drawn is black?

IIT 1987
1030

Find the derivative with respect to x of the function

 at x =

a)

b)

c)

d)

Find the derivative with respect to x of the function

 at x =

a)

b)

c)

d)

IIT 1984
1031

The function y = f(x) is the solution of the differential equation dydx+xyx21=x4+2x1x2

in (−1, 1) satisfying f(0) = 0, then 3232f(x)dx is

a) π332

b) π334

c) π634

d) π632

The function y = f(x) is the solution of the differential equation dydx+xyx21=x4+2x1x2

in (−1, 1) satisfying f(0) = 0, then 3232f(x)dx is

a) π332

b) π334

c) π634

d) π632

IIT 2014
1032

Solve  

Solve  

IIT 1996
1033

Let y′(x) + y(x) g′(x) = g(x) g′(x), y(0) = 0, x ∈ ℝ where f′(x) denotes ddxf(x)

and g(x) is a given non constant differentiable function on ℝ with g(0) = g(2) = 0. Then the value of y(2) is

a) 1

b) 0

c) 2

d) 4

Let y′(x) + y(x) g′(x) = g(x) g′(x), y(0) = 0, x ∈ ℝ where f′(x) denotes ddxf(x)

and g(x) is a given non constant differentiable function on ℝ with g(0) = g(2) = 0. Then the value of y(2) is

a) 1

b) 0

c) 2

d) 4

IIT 2011
1034

One or more than one correct option

A solution curve of the differential equation (x2+xy+4x+2y+4)dydxy2=0,x>0

passes through the point (1, 3), then the solution curve

a) Intersects y = x + 2 exactly at one point

b) Intersects y = x + 2 exactly at two points

c) Intersects y = (x + 2)2

d) Does not intersect y = (x + 3)2

One or more than one correct option

A solution curve of the differential equation (x2+xy+4x+2y+4)dydxy2=0,x>0

passes through the point (1, 3), then the solution curve

a) Intersects y = x + 2 exactly at one point

b) Intersects y = x + 2 exactly at two points

c) Intersects y = (x + 2)2

d) Does not intersect y = (x + 3)2

IIT 2016
1035

The value of

a) –1

b) 0

c) 1

d) i

e) None of these

The value of

a) –1

b) 0

c) 1

d) i

e) None of these

IIT 1987
1036

Let U1 = 1, U2 = 1, Un + 2 = Un + 1 + Un, n > 1. Use mathematical induction to show that
 
for all integers n > 1

Let U1 = 1, U2 = 1, Un + 2 = Un + 1 + Un, n > 1. Use mathematical induction to show that
 
for all integers n > 1

IIT 1981
1037

Let f(x) = (1 – x)2 sin2x + x2Consider the statementsStatement 1: There exists some x ∈ ℝ such that f(x) + 2x = 2(1 + x2)Statement 2: There exists some x ∈ ℝ such that 2f(x) + 1 = 2x(x + 1)

a) Both 1 and 2 are true

b) 1 is true and 2 is false

c) 1 is false and 2 is true

d) Both 1 and 2 are false

Let f(x) = (1 – x)2 sin2x + x2Consider the statementsStatement 1: There exists some x ∈ ℝ such that f(x) + 2x = 2(1 + x2)Statement 2: There exists some x ∈ ℝ such that 2f(x) + 1 = 2x(x + 1)

a) Both 1 and 2 are true

b) 1 is true and 2 is false

c) 1 is false and 2 is true

d) Both 1 and 2 are false

IIT 2013
1038

Let z and ω be two complex numbers such that |z| ≤ 1, |ω| ≤ 1 and   then z equals

a) 1 or i

b) i or –i

c) 1 or –1

d) i or –1

Let z and ω be two complex numbers such that |z| ≤ 1, |ω| ≤ 1 and   then z equals

a) 1 or i

b) i or –i

c) 1 or –1

d) i or –1

IIT 1995
1039

Given
 
 
Prove that
 

Given
 
 
Prove that
 

IIT 1984
1040

The coordinates of the in centre of the triangle that has the co ordinates of the mid points of its sides as (0, 1), (1, 1) and (1, 0) is

a) 2+2

b) 22

c) 1+2

d) 12

The coordinates of the in centre of the triangle that has the co ordinates of the mid points of its sides as (0, 1), (1, 1) and (1, 0) is

a) 2+2

b) 22

c) 1+2

d) 12

IIT 2013
1041

Using mathematical induction, prove that

 for n > 1

Using mathematical induction, prove that

 for n > 1

IIT 1986
1042

If f(x) =  then on the interval [0, π]

a) tan  and  are both continuous

b) tan  and  are both discontinuous

c) tan  and  are both continuous

d) tan  is continuous but  is not

If f(x) =  then on the interval [0, π]

a) tan  and  are both continuous

b) tan  and  are both discontinuous

c) tan  and  are both continuous

d) tan  is continuous but  is not

IIT 1989
1043

One or more than one correct option

A ray of light along x+3y=3

gets reflected upon reaching X- axis, the equation of the reflected ray is

a) y=x+3

b) 3y=x3

c) y=3x3

d) 3y=x1

One or more than one correct option

A ray of light along x+3y=3

gets reflected upon reaching X- axis, the equation of the reflected ray is

a) y=x+3

b) 3y=x3

c) y=3x3

d) 3y=x1

IIT 2013
1044

If  and  where 0 < x ≤1, then in this interval

a) Both f (x) and g (x) are increasing functions

b) Both f (x) and g (x) are decreasing functions

c) f (x) is an increasing function

d) g (x) is an increasing function

If  and  where 0 < x ≤1, then in this interval

a) Both f (x) and g (x) are increasing functions

b) Both f (x) and g (x) are decreasing functions

c) f (x) is an increasing function

d) g (x) is an increasing function

IIT 1997
1045

The number of common tangents to the circles x2 + y2 – 4x − 6y – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is

a) 1

b) 2

c) 3

d) 4

The number of common tangents to the circles x2 + y2 – 4x − 6y – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is

a) 1

b) 2

c) 3

d) 4

IIT 2015
1046

Let p ≥ 3 be an integer and α, β be the roots of x2 – (p + 1) x + 1 = 0. Using mathematical induction show that αn + βn
i) is an integer
ii) and is not divisible by p.

Let p ≥ 3 be an integer and α, β be the roots of x2 – (p + 1) x + 1 = 0. Using mathematical induction show that αn + βn
i) is an integer
ii) and is not divisible by p.

IIT 1992
1047

The function  is not differentiable at

a) – 1

b) 0

c) 1

d) 2

The function  is not differentiable at

a) – 1

b) 0

c) 1

d) 2

IIT 1999
1048

One or more than one correct option

Let RS be a diameter of the circle x2 + y2 = 1 where S is the point (1, 0). Let P be a variable point (other than R and S) on the circle and the tangents to the circle at S and P meet at the point Q. The normal to the circle at P intersect a line drawn through Q parallel to RS at a point E. Then the locus of E passes through the point(s)

a) (13,13)

b) (14,12)

c) (13,13)

d) (14,12)

One or more than one correct option

Let RS be a diameter of the circle x2 + y2 = 1 where S is the point (1, 0). Let P be a variable point (other than R and S) on the circle and the tangents to the circle at S and P meet at the point Q. The normal to the circle at P intersect a line drawn through Q parallel to RS at a point E. Then the locus of E passes through the point(s)

a) (13,13)

b) (14,12)

c) (13,13)

d) (14,12)

IIT 2016
1049

If x is not an integral multiple of 2π use mathematical induction to prove that
 

If x is not an integral multiple of 2π use mathematical induction to prove that
 

IIT 1994
1050

A circle passing through (1, −2) and touching the axis of X at (3, 0) also passes through the point

a) (−5, 2)

b) (2, −5)

c) (5, −2)

d) (−2, 5)

A circle passing through (1, −2) and touching the axis of X at (3, 0) also passes through the point

a) (−5, 2)

b) (2, −5)

c) (5, −2)

d) (−2, 5)

IIT 2013

Play Selected  Login to save this search...