|
976 |
The area bounded by the curve y = f(x), the X–axis and the ordinates x = 1, x = b is (b – 1) sin (3b + 4). Then f(x) is a) (x – 1) cos (3x + b) b) sin (3x + 4) c) sin (3x + 4) + 3 (x – 1) cos (3x + 4) d) none of these
The area bounded by the curve y = f(x), the X–axis and the ordinates x = 1, x = b is (b – 1) sin (3b + 4). Then f(x) is a) (x – 1) cos (3x + b) b) sin (3x + 4) c) sin (3x + 4) + 3 (x – 1) cos (3x + 4) d) none of these
|
IIT 2005 |
|
|
977 |
The sum where equals a) i b) i – 1 c) – i d) 0
The sum where equals a) i b) i – 1 c) – i d) 0
|
IIT 1998 |
|
|
978 |
Fill in the blank The value of f (x) = lies in the interval ……………. a)  b)  c)  d) 
Fill in the blank The value of f (x) = lies in the interval ……………. a)  b)  c)  d) 
|
IIT 1983 |
|
|
979 |
Find the area bounded by the curve x2 = 4y and the straight line x = 4y – 2. a) 3/2 b) 3/4 c) 9/4 d) 9/8
Find the area bounded by the curve x2 = 4y and the straight line x = 4y – 2. a) 3/2 b) 3/4 c) 9/4 d) 9/8
|
IIT 1981 |
|
|
980 |
If f(x) and g(x) are differentiable functions for 0 ≤ x ≤ 1 such that f(0) = 2, g(0) = 0, f(1) = 6, g(1) = 2 then show that there exists c satisfying 0 < c < 1 and . a) 0 < c < 1 and  b) 0 < c < 1 and  c) 0 < c < 1 and  d) 0 < c < 1 and 
If f(x) and g(x) are differentiable functions for 0 ≤ x ≤ 1 such that f(0) = 2, g(0) = 0, f(1) = 6, g(1) = 2 then show that there exists c satisfying 0 < c < 1 and . a) 0 < c < 1 and  b) 0 < c < 1 and  c) 0 < c < 1 and  d) 0 < c < 1 and 
|
IIT 1982 |
|
|
981 |
Let a > 0, b > 0, c > 0 then both the roots of the equation a) are real and positive b) have negative real parts c) have positive real parts d) none of these
Let a > 0, b > 0, c > 0 then both the roots of the equation a) are real and positive b) have negative real parts c) have positive real parts d) none of these
|
IIT 1979 |
|
|
982 |
If f(x) is a continuous function defined for 1 ≤ x ≤ 3. If f(x) takes rational values for all x and f(2) = 10 then f(1.5) = . . . . a) 2 b) 5 c) 10 d) 20
If f(x) is a continuous function defined for 1 ≤ x ≤ 3. If f(x) takes rational values for all x and f(2) = 10 then f(1.5) = . . . . a) 2 b) 5 c) 10 d) 20
|
IIT 1997 |
|
|
983 |
If x, y, z are real and distinct then is always a) Non – negative b) Non – positive c) Zero d) None of these
If x, y, z are real and distinct then is always a) Non – negative b) Non – positive c) Zero d) None of these
|
IIT 2005 |
|
|
984 |
Match the following Let [x] denote the greatest integer less than or equal to x | Column 1 | Column 2 | | i) x|x| | A)continuous in  | | ii)  | B)Differentiable in  | | iii) x + [x] | C)Steadily increasing in  | | iv) |x – 1| + |x + 1| | D) Not differentiable at least at one point in  | a) (i)→ A, B, C, (ii)→ A, D, (iii)→ C, D, (iv)→ A, B b) (i)→ A, (ii)→ A, (iii)→ C, (iv)→ B c) (i)→ B, (ii)→ D, (iii)→ C, (iv)→ A d) (i)→ A, B, (ii)→ A, D, (iii)→ C, D, (iv)→ B
Match the following Let [x] denote the greatest integer less than or equal to x | Column 1 | Column 2 | | i) x|x| | A)continuous in  | | ii)  | B)Differentiable in  | | iii) x + [x] | C)Steadily increasing in  | | iv) |x – 1| + |x + 1| | D) Not differentiable at least at one point in  | a) (i)→ A, B, C, (ii)→ A, D, (iii)→ C, D, (iv)→ A, B b) (i)→ A, (ii)→ A, (iii)→ C, (iv)→ B c) (i)→ B, (ii)→ D, (iii)→ C, (iv)→ A d) (i)→ A, B, (ii)→ A, D, (iii)→ C, D, (iv)→ B
|
IIT 2007 |
|
|
985 |
(One or more than one correct answer) If are complex numbers such that and then the pair of complex numbers and satisfy a)  b)  c)  d) None of these
|
IIT 1985 |
|
|
986 |
Let ABCD be a square with side of length 2 units. C2 is the circle through the vertices A, B, C, D and C1 is the circle touching all the sides of the square ABCD. L is a line through A. A line M is drawn through A parallel to BD. Point S moves such that the distance from the line BD and the vertex A are equal. If the locus of S cuts M at T2 and T3 and AC at T1, then find the area of △T1T2T3.
Let ABCD be a square with side of length 2 units. C2 is the circle through the vertices A, B, C, D and C1 is the circle touching all the sides of the square ABCD. L is a line through A. A line M is drawn through A parallel to BD. Point S moves such that the distance from the line BD and the vertex A are equal. If the locus of S cuts M at T2 and T3 and AC at T1, then find the area of △T1T2T3.
|
IIT 2006 |
|
|
987 |
Express in the form A + iB a)  b)  c)  d) 
Express in the form A + iB a)  b)  c)  d) 
|
IIT 1979 |
|
|
988 |
Find the area bounded by the curves a) 1/6 b) 1/3 c) π d) 
Find the area bounded by the curves a) 1/6 b) 1/3 c) π d) 
|
IIT 1986 |
|
|
989 |
If the line x – 1 = 0 is the directrix of the parabola y2 – kx + 8 = 0, then one of the values of k is a)  b) 8 c) 4 d) 
If the line x – 1 = 0 is the directrix of the parabola y2 – kx + 8 = 0, then one of the values of k is a)  b) 8 c) 4 d) 
|
IIT 2000 |
|
|
990 |
Find the area bounded by the curves x2 + y2 = 25, 4y = |4 – x2| and x = 0 above the X–axis. a)  b)  c)  d) 
Find the area bounded by the curves x2 + y2 = 25, 4y = |4 – x2| and x = 0 above the X–axis. a)  b)  c)  d) 
|
IIT 1987 |
|
|
991 |
If sinA sinB sinC + cosA cosB = 1then the value of sinC is
If sinA sinB sinC + cosA cosB = 1then the value of sinC is
|
IIT 2006 |
|
|
992 |
Let = 10 + 6i and . If z is a complex number such that argument of is then prove that .
|
IIT 1990 |
|
|
993 |
Compute the area of the region bounded by the curves y = exlnx and  a)  b)  c)  d) 
Compute the area of the region bounded by the curves y = exlnx and  a)  b)  c)  d) 
|
IIT 1990 |
|
|
994 |
A plane passes through (1, −2, 1) and is perpendicular to the two planes and The distance of the plane from the point (1, 2, 2) is.
A plane passes through (1, −2, 1) and is perpendicular to the two planes and The distance of the plane from the point (1, 2, 2) is.
|
IIT 2006 |
|
|
995 |
What normal to the curve y = x2 forms the shortest normal? a)  b)  c)  d) y = x + 1
What normal to the curve y = x2 forms the shortest normal? a)  b)  c)  d) y = x + 1
|
IIT 1992 |
|
|
996 |
(Multiple choices) The value of θ lying between θ = 0 and θ = and satisfying the equation = 0 are a)  b)  c)  d) 
(Multiple choices) The value of θ lying between θ = 0 and θ = and satisfying the equation = 0 are a)  b)  c)  d) 
|
IIT 1988 |
|
|
997 |
Let a complex number α, α ≠ 1, be root of the equation where p and q are distinct primes. Show that either or , but not together.
|
IIT 2002 |
|
|
998 |
The circle x2 + y2 = 1 cuts the X–axis at P and Q. Another circle with centre at Q and variable radius intersects the first circle at R above the X–axis and the line segment PQ at S. Find the maximum area of ΔQRS. a)  b)  c)  d) 
The circle x2 + y2 = 1 cuts the X–axis at P and Q. Another circle with centre at Q and variable radius intersects the first circle at R above the X–axis and the line segment PQ at S. Find the maximum area of ΔQRS. a)  b)  c)  d) 
|
IIT 1994 |
|
|
999 |
From a point A common tangents are drawn to the circle and the parabola . Find the area of the quadrilateral formed by the common tangents drawn from A and the chords of contact of the circle and the parabola.
From a point A common tangents are drawn to the circle and the parabola . Find the area of the quadrilateral formed by the common tangents drawn from A and the chords of contact of the circle and the parabola.
|
IIT 1996 |
|
|
1000 |
A curve y = f(x) passes through the point P:(1, 1). The equation to the normal at (1, 1) to the curve y = f(x) is (x – 1) + a(y – 1) = 0 and the slope of the tangent at any point on the curve is proportional to the ordinate of the point. Determine the equation of the curve. Also obtain the area bounded by the Y–axis, the curve and the normal at P. a)  b) y = ; c) ; d) 
A curve y = f(x) passes through the point P:(1, 1). The equation to the normal at (1, 1) to the curve y = f(x) is (x – 1) + a(y – 1) = 0 and the slope of the tangent at any point on the curve is proportional to the ordinate of the point. Determine the equation of the curve. Also obtain the area bounded by the Y–axis, the curve and the normal at P. a)  b) y = ; c) ; d) 
|
IIT 1996 |
|