All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
926

If z = x + iy and ω =  then |ω| =1 implies that in the complex plane

a) z lies on the imaginary axis

b) z lies on the real axis

c) z lies on unit circle

d) none of these

If z = x + iy and ω =  then |ω| =1 implies that in the complex plane

a) z lies on the imaginary axis

b) z lies on the real axis

c) z lies on unit circle

d) none of these

IIT 1983
927

For a positive integer n, define
 then

a) a(100) ≤ 100

b) a(100) > 100

c) a(200) ≤ 100

d) a(200) > 100

For a positive integer n, define
 then

a) a(100) ≤ 100

b) a(100) > 100

c) a(200) ≤ 100

d) a(200) > 100

IIT 1999
928

Let f:[0, 1] → ℝ (the set all real numbers)be a function. Suppose the function is twice differentiable, f(0) = f(1) = 0 and satisfiesf′′(x) – 2f′(x) + f(x) ≥ ex, x ∈ [0, 1]If the function e−x f(x) assumes its minimum in the interval [0, 1] at x=14

then which of the following is true?

a) f(x)<f(x),14<x<34

b) f(x)>f(x),0<x<14

c) f(x)<f(x),0<x<14

d) f(x)<f(x),34<x<1

Let f:[0, 1] → ℝ (the set all real numbers)be a function. Suppose the function is twice differentiable, f(0) = f(1) = 0 and satisfiesf′′(x) – 2f′(x) + f(x) ≥ ex, x ∈ [0, 1]If the function e−x f(x) assumes its minimum in the interval [0, 1] at x=14

then which of the following is true?

a) f(x)<f(x),14<x<34

b) f(x)>f(x),0<x<14

c) f(x)<f(x),0<x<14

d) f(x)<f(x),34<x<1

IIT 2013
929

There exists a function f(x) satisfying f (0) = 1,  and

f (x) > 0 for all x and

a)   for all x

b)  

c)   for all x

d)   for all x

There exists a function f(x) satisfying f (0) = 1,  and

f (x) > 0 for all x and

a)   for all x

b)  

c)   for all x

d)   for all x

IIT 1982
930

Let k be an integer such that the triangle with vertices (k, −3k), (5, k) and (−k, 2) has area 28 square units. Then the orthocentre of the triangle is at the point

a) (2,12)

b) (1,34)

c) (1,34)

d) (2,12)

Let k be an integer such that the triangle with vertices (k, −3k), (5, k) and (−k, 2) has area 28 square units. Then the orthocentre of the triangle is at the point

a) (2,12)

b) (1,34)

c) (1,34)

d) (2,12)

IIT 2017
931

If p is a natural number then prove that pn + 1 + (p + 1)2n – 1 is divisible by p2 + p + 1 for every positive integer n.

If p is a natural number then prove that pn + 1 + (p + 1)2n – 1 is divisible by p2 + p + 1 for every positive integer n.

IIT 1984
932

A straight line L through the point (3, −2) is inclined at an angle of 60° to the line 3x+y=1

. If the line L also intersects the X- axis then the equation of L is

a) y+3x+233=0

b) y3x+2+33=0

c) 3yx+3+23=0

d) 3y+x3+23=0

A straight line L through the point (3, −2) is inclined at an angle of 60° to the line 3x+y=1

. If the line L also intersects the X- axis then the equation of L is

a) y+3x+233=0

b) y3x+2+33=0

c) 3yx+3+23=0

d) 3y+x3+23=0

IIT 2011
933

The orthocenter of the triangle formed by the lines
  lies in the quadrant number . . . . .

The orthocenter of the triangle formed by the lines
  lies in the quadrant number . . . . .

IIT 1985
934

Prove by mathematical induction that
 for every positive integer n.

Prove by mathematical induction that
 for every positive integer n.

IIT 1987
935

The sides of a rhombus are along the lines x – y + 1 = 0 and 7x – y – 5 = 0. If its diagonals intersect at (−1, −2) then which one of the following is a vertex of the rhombus?

a) (3,9)

b) (3,8)

c) (13,83)

d) (103,73)

The sides of a rhombus are along the lines x – y + 1 = 0 and 7x – y – 5 = 0. If its diagonals intersect at (−1, −2) then which one of the following is a vertex of the rhombus?

a) (3,9)

b) (3,8)

c) (13,83)

d) (103,73)

IIT 2016
936

Let  and  intersect the line
 at P and Q respectively. Bisector of the acute angle between L1 and L2 intersects L3 in R.
Statement 1 – The ratio PR : RQ equals  because
Statement 2 – In any triangle, bisector of an angle divides the triangle into two similar triangles.
The question contains Statement 1(assertion) and Statement 2(reason). Of these statements, mark correct choice if

a) Statement 1 and 2 are true. Statement 2 is a correct explanation for statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation for statement 1.

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true.

Let  and  intersect the line
 at P and Q respectively. Bisector of the acute angle between L1 and L2 intersects L3 in R.
Statement 1 – The ratio PR : RQ equals  because
Statement 2 – In any triangle, bisector of an angle divides the triangle into two similar triangles.
The question contains Statement 1(assertion) and Statement 2(reason). Of these statements, mark correct choice if

a) Statement 1 and 2 are true. Statement 2 is a correct explanation for statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation for statement 1.

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true.

IIT 2007
937

Prove that  is an integer for every positive integer.

Prove that  is an integer for every positive integer.

IIT 1990
938

If f is a continuous function with  as |x| → ∞ then show that every line y = mx intersects the curve .

If f is a continuous function with  as |x| → ∞ then show that every line y = mx intersects the curve .

IIT 1991
939

Show, by vector method, that the angular bisectors of a triangle are concurrent and find an expression for the position vector of point of concurrency in terms of position vectors of the vertices.

Show, by vector method, that the angular bisectors of a triangle are concurrent and find an expression for the position vector of point of concurrency in terms of position vectors of the vertices.

IIT 2001
940

The C be a circle with the centre at (1, 1) and radius 1. If T is the circle centred at (0, k) passing through origin and touches the circle C externally, then the radius of T is equal to

a) 32

b) 32

c) 12

d) 14

The C be a circle with the centre at (1, 1) and radius 1. If T is the circle centred at (0, k) passing through origin and touches the circle C externally, then the radius of T is equal to

a) 32

b) 32

c) 12

d) 14

IIT 2014
941

If AB is a diameter of a circle and C is any point on the circumference of the circle then

a) The area of ΔABC is maximum when it is isosceles

b) The area of ΔABC is minimum when it is isosceles

c) The perimeter of ΔABC is minimum when it is isosceles

d) None of these

If AB is a diameter of a circle and C is any point on the circumference of the circle then

a) The area of ΔABC is maximum when it is isosceles

b) The area of ΔABC is minimum when it is isosceles

c) The perimeter of ΔABC is minimum when it is isosceles

d) None of these

IIT 1983
942

Let f : ℝ → ℝ be any function. Define g : ℝ → ℝ by g (x) = |f (x)| for all x. Then g is

a) Onto if f is onto

b) One to one if f is one to one

c) Continuous if f is continuous

d) Differentiable if f is differentiable

Let f : ℝ → ℝ be any function. Define g : ℝ → ℝ by g (x) = |f (x)| for all x. Then g is

a) Onto if f is onto

b) One to one if f is one to one

c) Continuous if f is continuous

d) Differentiable if f is differentiable

IIT 2000
943

Evaluate

a)

b)

c)

d)

Evaluate

a)

b)

c)

d)

IIT 1993
944

One or more than one correct option

The circle C1 : x2 + y2 = 3 with centre at O intersect the parabola x2 = 2y at the point P in the first quadrant. Let the tangent to the circle C1 at P touches other two circles C2 and C3 at R2 and R3 respectively. Suppose C2 and C3 have equal radii 23

and centres Q2 and Q3 respectively. If Q2 and Q3 lie on the Y- axis, then

a) Q2Q3=12

b) R2R3=46

c) areaof2R3isR2

d) areaofPQ2Q3is42

One or more than one correct option

The circle C1 : x2 + y2 = 3 with centre at O intersect the parabola x2 = 2y at the point P in the first quadrant. Let the tangent to the circle C1 at P touches other two circles C2 and C3 at R2 and R3 respectively. Suppose C2 and C3 have equal radii 23

and centres Q2 and Q3 respectively. If Q2 and Q3 lie on the Y- axis, then

a) Q2Q3=12

b) R2R3=46

c) areaof2R3isR2

d) areaofPQ2Q3is42

IIT 2016
945

Let f : ℝ → ℝ be a function defined by f (x) =  . The set of points where f (x) is not differentiable is

a) }

b)

c) {0, 1}

d)

Let f : ℝ → ℝ be a function defined by f (x) =  . The set of points where f (x) is not differentiable is

a) }

b)

c) {0, 1}

d)

IIT 2001
946

The circle passing through the point (−1, 0) and touching the Y – axis at (0, 2) also passes through the point

a) (32,0)

b) (52,0)

c) (32,52)

d) (4,0)

The circle passing through the point (−1, 0) and touching the Y – axis at (0, 2) also passes through the point

a) (32,0)

b) (52,0)

c) (32,52)

d) (4,0)

IIT 2011
947

Let a, b, c be positive real numbers such that b2 – 4ac > 0 and let α1 = c. Prove by induction that
 

Is well defined and  for n=1, 2, …

Here well defined means that the denominator in the expression of  is not zero.

Let a, b, c be positive real numbers such that b2 – 4ac > 0 and let α1 = c. Prove by induction that
 

Is well defined and  for n=1, 2, …

Here well defined means that the denominator in the expression of  is not zero.

IIT 2001
948

Let O be the vertex and Q be any point on the parabola x2 = 8y. If the point P divides the line segment OQ^

internally in the ratio 1 : 3 then the locus of P is

a) x2 = y

b) y2 = x

c) y2 = 2x

d) x2 = 2y

Let O be the vertex and Q be any point on the parabola x2 = 8y. If the point P divides the line segment OQ^

internally in the ratio 1 : 3 then the locus of P is

a) x2 = y

b) y2 = x

c) y2 = 2x

d) x2 = 2y

IIT 2015
949

Solve the following equation for x
 

a) −1

b)

c) 0

d) −1 and

Solve the following equation for x
 

a) −1

b)

c) 0

d) −1 and

IIT 1978
950

If f is a differentiable function satisfying  for all n ≥ 1,

n  I then

a)

b)

c)

d)  is not necessarily zero

If f is a differentiable function satisfying  for all n ≥ 1,

n  I then

a)

b)

c)

d)  is not necessarily zero

IIT 2005

Play Selected  Login to save this search...