All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
876

A ladder rests against a wall at an angle α to the horizontal. If its foot is pulled away from the wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal, then .

a) True

b) False

A ladder rests against a wall at an angle α to the horizontal. If its foot is pulled away from the wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal, then .

a) True

b) False

IIT 1985
877

Let be the vertices of an n sided regular polygon such that   . Then find n.

a) 5

b) 6

c) 7

d) 8

Let be the vertices of an n sided regular polygon such that   . Then find n.

a) 5

b) 6

c) 7

d) 8

IIT 1994
878

A variable plane at a distance of one unit from the origin cuts the coordinate axes at A, B and C. If the centroid D(x, y, z) of triangle ABC satisfies the relation  then the value of k is

a) 9

b)

c) 1

d) 3

A variable plane at a distance of one unit from the origin cuts the coordinate axes at A, B and C. If the centroid D(x, y, z) of triangle ABC satisfies the relation  then the value of k is

a) 9

b)

c) 1

d) 3

IIT 2005
879

Find the equation of the plane passing through the points (2, 1, 0), (4, 1, 1), (5, 0, 1). Find the point Q such that its distance from the plane is equal to the point P(2, 1, 6) from the plane and the line joining P and Q is perpendicular to the plane.

Find the equation of the plane passing through the points (2, 1, 0), (4, 1, 1), (5, 0, 1). Find the point Q such that its distance from the plane is equal to the point P(2, 1, 6) from the plane and the line joining P and Q is perpendicular to the plane.

IIT 2003
880

The unit vector perpendicular to the plane determined by
 is.

The unit vector perpendicular to the plane determined by
 is.

IIT 1983
881

Consider the lines

 ;

 
The shortest distance between L1 and L2 is

a) 0

b)

c)

d)

Consider the lines

 ;

 
The shortest distance between L1 and L2 is

a) 0

b)

c)

d)

IIT 2008
882

Let ABCD is the base of parallelopiped T and Aʹ.BʹCʹDʹ be the upper face. The parallelopiped is compressed so that the vertex Aʹ shifts to Aʹʹ on a parallelepiped S. If the volume of the new parallelopiped is 90% of the parallelopiped T, prove that the locus of Aʹʹ is a plane.

Let ABCD is the base of parallelopiped T and Aʹ.BʹCʹDʹ be the upper face. The parallelopiped is compressed so that the vertex Aʹ shifts to Aʹʹ on a parallelepiped S. If the volume of the new parallelopiped is 90% of the parallelopiped T, prove that the locus of Aʹʹ is a plane.

IIT 2004
883

Show that  =

Show that  =

IIT 1985
884

For all A, B, C, P, Q, R show that
 = 0

For all A, B, C, P, Q, R show that
 = 0

IIT 1996
885

Let f(x) = |x – 1|, then

a)

b)

c)

d) None of these

Let f(x) = |x – 1|, then

a)

b)

c)

d) None of these

IIT 1983
886

The differential equation representing the family of curves  where c is a positive parameter, is of

a) Order 1

b) Order 2

c) Degree 3

d) Degree 4

The differential equation representing the family of curves  where c is a positive parameter, is of

a) Order 1

b) Order 2

c) Degree 3

d) Degree 4

IIT 1999
887

Let a, b, c be real numbers with a2 + b2 + c2 = 1. Show that the equation represents a straight line
 = 0

Let a, b, c be real numbers with a2 + b2 + c2 = 1. Show that the equation represents a straight line
 = 0

IIT 2001
888

Let , then the set  is

a)  

b)  

c)  

d)  ϕ

Let , then the set  is

a)  

b)  

c)  

d)  ϕ

IIT 1995
889

A normal is drawn at a point  of a curve meeting X-axis at Q. If PQ is of constant length k, then show that the differential equation of the curve is  

A normal is drawn at a point  of a curve meeting X-axis at Q. If PQ is of constant length k, then show that the differential equation of the curve is  

IIT 1994
890

If f(x) = 3x – 5 then  

a) is given by

b) is given by

c) does not exist because f is not one-one

d) does not exist because f is not onto

If f(x) = 3x – 5 then  

a) is given by

b) is given by

c) does not exist because f is not one-one

d) does not exist because f is not onto

IIT 1998
891

Find the integral solutions of the following system of inequality
 

a) x = 1

b) x = 2

c) x = 3

d) x = 4

Find the integral solutions of the following system of inequality
 

a) x = 1

b) x = 2

c) x = 3

d) x = 4

IIT 1979
892

Let f(θ) = sinθ (sinθ + sin3θ) then f(θ)

a) ≥ 0 only when θ ≥ 0

b)  ≤ 0 for all real θ

c)  ≥ 0 for all real θ

d) ≤ θ only when θ ≤ 0

Let f(θ) = sinθ (sinθ + sin3θ) then f(θ)

a) ≥ 0 only when θ ≥ 0

b)  ≤ 0 for all real θ

c)  ≥ 0 for all real θ

d) ≤ θ only when θ ≤ 0

IIT 2000
893

Let y = f(x) is a cubic polynomial having maximum at x = − 1 and  has a minimum at x = 1 and f(−1) = 10, f(1) = − 6. Find the cubic polynomial and also find the distance between the points which are maxima or minima.

a)

b)

c)

d)

Let y = f(x) is a cubic polynomial having maximum at x = − 1 and  has a minimum at x = 1 and f(−1) = 10, f(1) = − 6. Find the cubic polynomial and also find the distance between the points which are maxima or minima.

a)

b)

c)

d)

IIT 2005
894

Each of the following four inequalities given below define a region in the XY–plane. One of these four regions does not have the following property: For any two points (x1, y1) and (x2, y2) in the region, point  is also in the region. The inequality defining the region that does not have this property is

a) x2 + 2y2 ≤ 1

b) max (|x|, |y|) ≤ 1

c) x2 – y2 ≥ 1

d) y2 – x ≤ 0

Each of the following four inequalities given below define a region in the XY–plane. One of these four regions does not have the following property: For any two points (x1, y1) and (x2, y2) in the region, point  is also in the region. The inequality defining the region that does not have this property is

a) x2 + 2y2 ≤ 1

b) max (|x|, |y|) ≤ 1

c) x2 – y2 ≥ 1

d) y2 – x ≤ 0

IIT 1981
895

The domain of definition of the function           is

a)  

b)  

c)  

d)  

The domain of definition of the function           is

a)  

b)  

c)  

d)  

IIT 2002
896

The set of values of x which ln(1 + x) ≤ x is equal to .  .  .  .

a) (−∞, −1)

b) (−1, 0)

c) (0, 1)

d) (1, ∞)

The set of values of x which ln(1 + x) ≤ x is equal to .  .  .  .

a) (−∞, −1)

b) (−1, 0)

c) (0, 1)

d) (1, ∞)

IIT 1987
897

For any positive integers m, n (with n ≥ m), we are given that
  
Deduce that
  

For any positive integers m, n (with n ≥ m), we are given that
  
Deduce that
  

IIT 2000
898

If A and B are two independent events such that P (A) > 0 and P (B) ≠ 1 then  is equal to

a)

b)

c)

d)

If A and B are two independent events such that P (A) > 0 and P (B) ≠ 1 then  is equal to

a)

b)

c)

d)

IIT 1980
899

If,  then g(f(x)) is invertible in the domain

a)

b)

c)

d)

If,  then g(f(x)) is invertible in the domain

a)

b)

c)

d)

IIT 2004
900

Evaluate

a)

b)

c)

d)

Evaluate

a)

b)

c)

d)

IIT 2006

Play Selected  Login to save this search...