|
826 |
If α is a repeated root of a quadratic equation f(x) = 0 and A(x), B(x), C(x) be polynomials of degree 3, 4, 5 respectively, Then show that is divisible by f(x) where prime denotes the derivatives.
If α is a repeated root of a quadratic equation f(x) = 0 and A(x), B(x), C(x) be polynomials of degree 3, 4, 5 respectively, Then show that is divisible by f(x) where prime denotes the derivatives.
|
IIT 1984 |
|
|
827 |
The differential equation determines a family of circles with a) Variable radii and a fixed centre ( 0, 1) b) Variable radii and a fixed centre ( 0, -1) c) Fixed radius and a variable centre along the X-axis d) Fixed radius and a variable centre along the Y-axis
The differential equation determines a family of circles with a) Variable radii and a fixed centre ( 0, 1) b) Variable radii and a fixed centre ( 0, -1) c) Fixed radius and a variable centre along the X-axis d) Fixed radius and a variable centre along the Y-axis
|
IIT 2007 |
|
|
828 |
Prove that for all values of θ = 0
Prove that for all values of θ = 0
|
IIT 2000 |
|
|
829 |
If and , then show that
|
IIT 1989 |
|
|
830 |
A = , B = , U = , V =  If AX = U has infinitely many solutions, prove that BX = V has no unique solution. Also prove that if afd ≠ 0 then BX = V has no solution. X is a vector.
|
IIT 2004 |
|
|
831 |
If , for every real number x, then the minimum value of f a) does not exist because f is unbounded b) is not attained even though f is bounded c) is equal to 1 d) is equal to –1
If , for every real number x, then the minimum value of f a) does not exist because f is unbounded b) is not attained even though f is bounded c) is equal to 1 d) is equal to –1
|
IIT 1998 |
|
|
832 |
Let u (x) and v (x) satisfy the differential equations and where p (x), f (x) and g (x) are continuous functions. If u (x1) > v (x1) for some x1 and f (x) > g (x) for all x > x1, prove that at any point (x, y) where x > x1 does not satisfy the equations y = u (x) and y = v (x)
|
IIT 1997 |
|
|
833 |
The function is defined by then is a)  b)  c)  d) None of these
The function is defined by then is a)  b)  c)  d) None of these
|
IIT 1999 |
|
|
834 |
is
is
|
IIT 2006 |
|
|
835 |
Suppose for x ≥ . If g(x) is the function whose graph is the reflection of f(x) with respect to the line y = x then g(x) equals a)  b)  c)  d) 
Suppose for x ≥ . If g(x) is the function whose graph is the reflection of f(x) with respect to the line y = x then g(x) equals a)  b)  c)  d) 
|
IIT 2002 |
|
|
836 |
Domain of definition of the function for real values of x is a)  b)  c)  d) 
Domain of definition of the function for real values of x is a)  b)  c)  d) 
|
IIT 2003 |
|
|
837 |
Let λ and α be real. Find the set of all values of λ for which the system of linear equations has a non-trivial solution. For λ = 1 find the value of α.
|
IIT 1993 |
|
|
838 |
Let f be a one–one function with domain {x, y, z} and range {1, 2, 3}. It is given that exactly one of the following statements is true and remaining statements are false f (1) = 1, f (y) ≠ 1, f (z) ≠ 2. Determine
Let f be a one–one function with domain {x, y, z} and range {1, 2, 3}. It is given that exactly one of the following statements is true and remaining statements are false f (1) = 1, f (y) ≠ 1, f (z) ≠ 2. Determine
|
IIT 1982 |
|
|
839 |
The value of . Given that a, x, y, z, b are in Arithmetic Progression while the value of . If a, x, y, z, b are in Harmonic Progression then find a and b.
The value of . Given that a, x, y, z, b are in Arithmetic Progression while the value of . If a, x, y, z, b are in Harmonic Progression then find a and b.
|
IIT 1978 |
|
|
840 |
Let {x} and [x] denote the fractional and integral part of a real number x respectively. Solve 4{x} = x + [x]
Let {x} and [x] denote the fractional and integral part of a real number x respectively. Solve 4{x} = x + [x]
|
IIT 1994 |
|
|
841 |
If f1(x) and f2(x) are defined by domains D1 and D2 respectively then f1(x) + f2(x) is defined as on D1 ⋂ D2 a) True b) False
If f1(x) and f2(x) are defined by domains D1 and D2 respectively then f1(x) + f2(x) is defined as on D1 ⋂ D2 a) True b) False
|
IIT 1988 |
|
|
842 |
If then the domain of f(x) is
If then the domain of f(x) is
|
IIT 1985 |
|
|
843 |
The real numbers x1, x2, x3 satisfying the equation x3 – x2 + βx + γ = 0 are in Arithmetic Progression. Find the interval in which β and γ lie.
The real numbers x1, x2, x3 satisfying the equation x3 – x2 + βx + γ = 0 are in Arithmetic Progression. Find the interval in which β and γ lie.
|
IIT 1996 |
|
|
844 |
Let p, q, r be three mutually perpendicular vectors of the same magnitude. If x satisfies the equation p ((x – q) p) + q ((x – r) q) + r ((x – p) r) = 0 then x is given by a)  b)  c)  d) 
|
IIT 1997 |
|
|
845 |
Let f(x) be a non constant differentiable function defined on (−∞, ∞) such that f(x) = f(1 – x) and then a) vanishes at twice an (0, 1) b)  c)  d) 
Let f(x) be a non constant differentiable function defined on (−∞, ∞) such that f(x) = f(1 – x) and then a) vanishes at twice an (0, 1) b)  c)  d) 
|
IIT 2008 |
|
|
846 |
Let and a unit vector c be coplanar. If c is perpendicular to a then c is equal to a)  b)  c)  d) 
Let and a unit vector c be coplanar. If c is perpendicular to a then c is equal to a)  b)  c)  d) 
|
IIT 1999 |
|
|
847 |
Number of solutions of lying in the interval is a) 0 b) 1 c) 2 d) 3
Number of solutions of lying in the interval is a) 0 b) 1 c) 2 d) 3
|
IIT 1993 |
|
|
848 |
If three complex numbers are in Arithmetic Progression, then they lie on a circle in a complex plane. a) True b) False
If three complex numbers are in Arithmetic Progression, then they lie on a circle in a complex plane. a) True b) False
|
IIT 1985 |
|
|
849 |
Multiple choice The vector is a) A unit vector b) Makes an angle with the vector  c) Parallel to vector  d) Perpendicular to the vector 
Multiple choice The vector is a) A unit vector b) Makes an angle with the vector  c) Parallel to vector  d) Perpendicular to the vector 
|
IIT 1994 |
|
|
850 |
A1, A2, …… , An are the vertices of a regular polygon with n sides and O is the centre. Show that
A1, A2, …… , An are the vertices of a regular polygon with n sides and O is the centre. Show that
|
IIT 1982 |
|