All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
801

Find the integral solutions of the following system of inequality
 

a) x = 1

b) x = 2

c) x = 3

d) x = 4

Find the integral solutions of the following system of inequality
 

a) x = 1

b) x = 2

c) x = 3

d) x = 4

IIT 1979
802

Area bounded by  and

Area bounded by  and

IIT 2006
803

mn squares of equal size are arranged to form a rectangle of dimension m by n, where m and n are natural numbers. Two squares will be called neighbours if they have exactly one common side. A natural number is written in each square such that the number written in any square is the arithmetic mean of the numbers written in the neighbouring squares. Show that this is possible only if all the numbers used are equal.

mn squares of equal size are arranged to form a rectangle of dimension m by n, where m and n are natural numbers. Two squares will be called neighbours if they have exactly one common side. A natural number is written in each square such that the number written in any square is the arithmetic mean of the numbers written in the neighbouring squares. Show that this is possible only if all the numbers used are equal.

IIT 1982
804

Let A =
 
AU1 =  , AU2 =  and AU3 =
 

a) 3

b) −3

c)  

d) 2

Let A =
 
AU1 =  , AU2 =  and AU3 =
 

a) 3

b) −3

c)  

d) 2

IIT 2006
805

The domain of definition of  is

a)  

b)  

c)  

d)  

The domain of definition of  is

a)  

b)  

c)  

d)  

IIT 2001
806

Let f : ℝ → ℝ be defined by f(x) = 2x + sinx for all x  ℝ. Then f is

a) One to one and onto

b) One to one but not onto

c) Onto but not one to one

d) Neither one to one nor onto

Let f : ℝ → ℝ be defined by f(x) = 2x + sinx for all x  ℝ. Then f is

a) One to one and onto

b) One to one but not onto

c) Onto but not one to one

d) Neither one to one nor onto

IIT 2002
807

Range of    ;   x  ℝ is

a) (1, ∞)

b)

c)

d)

Range of    ;   x  ℝ is

a) (1, ∞)

b)

c)

d)

IIT 2003
808

Let a, b, c, ε R and α, β be roots of  such that  and  then show that .

Let a, b, c, ε R and α, β be roots of  such that  and  then show that .

IIT 1995
809

If  where
. Given F(5) = 5, then f(10) is equal to

a) 5

b) 10

c) 0

d) 15

If  where
. Given F(5) = 5, then f(10) is equal to

a) 5

b) 10

c) 0

d) 15

IIT 2006
810

Subjective problems
Let .  Find all real values of x for which y takes real values.

a) [− 1, 2)

b)  [3, ∞)

c) [− 1, 2) ∪ [3, ∞)

d) None of the above

Subjective problems
Let .  Find all real values of x for which y takes real values.

a) [− 1, 2)

b)  [3, ∞)

c) [− 1, 2) ∪ [3, ∞)

d) None of the above

IIT 1980
811

Let R be the set of real numbers and f : R → R be such that for all x and y in R, . Prove that f(x) is constant.

Let R be the set of real numbers and f : R → R be such that for all x and y in R, . Prove that f(x) is constant.

IIT 1988
812

If f1(x) and f2(x) are defined by domains D1 and D2 respectively then f1(x) + f2(x) is defined as on D1 ⋂ D2

a) True

b) False

If f1(x) and f2(x) are defined by domains D1 and D2 respectively then f1(x) + f2(x) is defined as on D1 ⋂ D2

a) True

b) False

IIT 1988
813

If  then the domain of f(x) is

If  then the domain of f(x) is

IIT 1985
814

The real numbers x1, x2, x3 satisfying the equation x3 – x2 + βx + γ = 0 are in Arithmetic Progression. Find the interval in which β and γ lie.

The real numbers x1, x2, x3 satisfying the equation x3 – x2 + βx + γ = 0 are in Arithmetic Progression. Find the interval in which β and γ lie.

IIT 1996
815

Let p, q, r be three mutually perpendicular vectors of the same magnitude. If x satisfies the equation p  ((xq)  p) + q ((xr)  q) + r  ((xp)  r) = 0 then x is given by

a)

b)

c)

d)

Let p, q, r be three mutually perpendicular vectors of the same magnitude. If x satisfies the equation p  ((xq)  p) + q ((xr)  q) + r  ((xp)  r) = 0 then x is given by

a)

b)

c)

d)

IIT 1997
816

Let f(x) be a non constant differentiable function defined on (−∞, ∞) such that f(x) = f(1 – x) and  then

a)  vanishes at twice an (0, 1)

b)

c)

d)

Let f(x) be a non constant differentiable function defined on (−∞, ∞) such that f(x) = f(1 – x) and  then

a)  vanishes at twice an (0, 1)

b)

c)

d)

IIT 2008
817

Let and a unit vector c be coplanar. If c is perpendicular to a then c is equal to

a)

b)

c)

d)

Let and a unit vector c be coplanar. If c is perpendicular to a then c is equal to

a)

b)

c)

d)

IIT 1999
818

Number of solutions of  lying in the interval  is

a) 0

b) 1

c) 2

d) 3

Number of solutions of  lying in the interval  is

a) 0

b) 1

c) 2

d) 3

IIT 1993
819

If three complex numbers are in Arithmetic Progression, then they lie on a circle in a complex plane.

a) True

b) False

If three complex numbers are in Arithmetic Progression, then they lie on a circle in a complex plane.

a) True

b) False

IIT 1985
820

Multiple choice

The vector  is

a) A unit vector

b) Makes an angle  with the vector

c) Parallel to vector

d) Perpendicular to the vector

Multiple choice

The vector  is

a) A unit vector

b) Makes an angle  with the vector

c) Parallel to vector

d) Perpendicular to the vector

IIT 1994
821

A1, A2, …… , An are the vertices of  a regular polygon with n sides and O is the centre. Show that
 

A1, A2, …… , An are the vertices of  a regular polygon with n sides and O is the centre. Show that
 

IIT 1982
822

If A, B, C are such that |B| = |C|. Prove that

If A, B, C are such that |B| = |C|. Prove that

IIT 1997
823

Let u and v be unit vectors. If w is a vector such that , then prove that  and that equality holds if and only if  is perpendicular to

Let u and v be unit vectors. If w is a vector such that , then prove that  and that equality holds if and only if  is perpendicular to

IIT 1999
824

Let n be an odd integer. If sin nθ =  for every value of θ, then

a) = 1, = 3

b) = 0, = n

c) = −1, = n

d) = 1, =

Let n be an odd integer. If sin nθ =  for every value of θ, then

a) = 1, = 3

b) = 0, = n

c) = −1, = n

d) = 1, =

IIT 1998
825

The points with position vectors  and  are collinear for all real values of k.

a) True

b) False

The points with position vectors  and  are collinear for all real values of k.

a) True

b) False

IIT 1984

Play Selected  Login to save this search...