All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
801

Multiple choice

Let  be three vectors. A vector in the plane of b and c whose projection on a is of magnitude  is

a)

b)

c)

d)

Multiple choice

Let  be three vectors. A vector in the plane of b and c whose projection on a is of magnitude  is

a)

b)

c)

d)

IIT 1993
802

Let A be vector parallel to the line of intersection of planes P1 and P2. Plane P1 is parallel to the vectors   and  and that P2 is parallel to  and , then the angle between vector A and a given vector  is

a)

b)

c)

d)

Let A be vector parallel to the line of intersection of planes P1 and P2. Plane P1 is parallel to the vectors   and  and that P2 is parallel to  and , then the angle between vector A and a given vector  is

a)

b)

c)

d)

IIT 2006
803

Find the range of values of t for which  

a) (−, −)

b) ( ,  )

c) (− , −  ) U ( ,  )

d) (−,  )

Find the range of values of t for which  

a) (−, −)

b) ( ,  )

c) (− , −  ) U ( ,  )

d) (−,  )

IIT 2005
804

A vector A has components A1, A2, A3 in a right handed rectangular cartesian coordinate system OXYZ. The coordinate system is rotated about the X–axis through an angle . Find the components of A in the new co-ordinate system in terms of A1, A2, A3.

A vector A has components A1, A2, A3 in a right handed rectangular cartesian coordinate system OXYZ. The coordinate system is rotated about the X–axis through an angle . Find the components of A in the new co-ordinate system in terms of A1, A2, A3.

IIT 1983
805

The value of  is equal to

a)

b)

c)

d)

The value of  is equal to

a)

b)

c)

d)

IIT 1991
806

In a triangle OAB, E is the midpoint of BO and D is a point on AB such that AD : DB = 2 : 1. If OD and AE intercept at P determine the ratio OP : PD using vector methods.

In a triangle OAB, E is the midpoint of BO and D is a point on AB such that AD : DB = 2 : 1. If OD and AE intercept at P determine the ratio OP : PD using vector methods.

IIT 1989
807

The position vectors of the vertices A, B, C of a tetrahedron are  respectively. The altitude from the vertex D to the opposite face ABC meets the median line through A of the triangle ABC at E. If the length of the side AD is 4 and the volume of the tetrahedron is . Find the position vector of E or all possible positions.

The position vectors of the vertices A, B, C of a tetrahedron are  respectively. The altitude from the vertex D to the opposite face ABC meets the median line through A of the triangle ABC at E. If the length of the side AD is 4 and the volume of the tetrahedron is . Find the position vector of E or all possible positions.

IIT 1996
808

For any two vectors u and v prove that

i)

ii)

For any two vectors u and v prove that

i)

ii)

IIT 1998
809

True/False

If  for some non zero vector X then  

a) True

b) False

True/False

If  for some non zero vector X then  

a) True

b) False

IIT 1983
810

If  then  

a) True

b) False

If  then  

a) True

b) False

IIT 1979
811

Let  and  where O, A and B are non-collinear points. Let p denote the area of the quadrilateral OABC and let q denote the area of the quadrilateral with OA and OC as adjacent sides. If p = kq then k = .  .  .  .  .

Let  and  where O, A and B are non-collinear points. Let p denote the area of the quadrilateral OABC and let q denote the area of the quadrilateral with OA and OC as adjacent sides. If p = kq then k = .  .  .  .  .

IIT 1997
812

Prove that  = 2[cosx + cos3x + cos5x + … + cos(2k−1)x] for any positive integer k. Hence prove that  =

Prove that  = 2[cosx + cos3x + cos5x + … + cos(2k−1)x] for any positive integer k. Hence prove that  =

IIT 1990
813

The function
f(x) =|px – q| + r |x|, x ε (−, )
where p > 0, q > 0, r > 0 assumes minimum value on one point if

a) p ≠ q

b) r = q

c) r ≠ p

d) r = p = q

The function
f(x) =|px – q| + r |x|, x ε (−, )
where p > 0, q > 0, r > 0 assumes minimum value on one point if

a) p ≠ q

b) r = q

c) r ≠ p

d) r = p = q

IIT 1995
814

Let f : R → R be any function defined g : R → R by g (x) = |f (x)| for all x. Then g is

a) onto if f is onto

b) one to one if f is one to one

c) continuous if f is continuous

d) differentiable if f is differentiable

Let f : R → R be any function defined g : R → R by g (x) = |f (x)| for all x. Then g is

a) onto if f is onto

b) one to one if f is one to one

c) continuous if f is continuous

d) differentiable if f is differentiable

IIT 2000
815

If f : [ 1,  → [ 2, ] is given by f (x) = x +  then ( x ) is given by

a)

b)

c)

d) 1 +

If f : [ 1,  → [ 2, ] is given by f (x) = x +  then ( x ) is given by

a)

b)

c)

d) 1 +

IIT 2001
816

The function of f : R → R be defined by f (x) = 2x + sinx for x ε R . Then f is

a) one-one and onto

b) one-one but not onto

c) onto but not one-one

d) neither one-one nor onto

The function of f : R → R be defined by f (x) = 2x + sinx for x ε R . Then f is

a) one-one and onto

b) one-one but not onto

c) onto but not one-one

d) neither one-one nor onto

IIT 2002
817

Multiple choice

There exists a triangle ABC satisfying the conditions

a) bsinA = a, A <

b) bsinA > a, A >

c) bsinA > a, A <

d) bsinA < a, A <, b > a

e) bsinA < a, A >, b = a

Multiple choice

There exists a triangle ABC satisfying the conditions

a) bsinA = a, A <

b) bsinA > a, A >

c) bsinA > a, A <

d) bsinA < a, A <, b > a

e) bsinA < a, A >, b = a

IIT 1986
818

With usual notation if in a triangle ABC,  then

 .

a) True

b) False

With usual notation if in a triangle ABC,  then

 .

a) True

b) False

IIT 1984
819

If in a triangle ABC, cosA cosB + sinA sinB sin C = 1 then show that  a : b : c = 1 : 1 :

a) True

b) False

If in a triangle ABC, cosA cosB + sinA sinB sin C = 1 then show that  a : b : c = 1 : 1 :

a) True

b) False

IIT 1986
820

If the lines  and  intersect then the value of k is

a)

b)

c)

d)

If the lines  and  intersect then the value of k is

a)

b)

c)

d)

IIT 2004
821

The area of a triangle whose vertices are
 is

The area of a triangle whose vertices are
 is

IIT 1983
822

The parameter on which the value of the determinant
Δ =
does not depend upon is

a) a

b) p

c) d

d) x

The parameter on which the value of the determinant
Δ =
does not depend upon is

a) a

b) p

c) d

d) x

IIT 1997
823

Consider the lines

 ;

 
The unit vector perpendicular to both L1 and L2 is

a)

b)

c)

d)

Consider the lines

 ;

 
The unit vector perpendicular to both L1 and L2 is

a)

b)

c)

d)

IIT 2008
824

If b > a then the equation ( x – a ) ( x – b )1 = 0 has

a) Both roots in [ a, b ]

b) Both roots in ( , a )

c) Both roots in (  )

d) One root in ( , a ) and other in ( )

If b > a then the equation ( x – a ) ( x – b )1 = 0 has

a) Both roots in [ a, b ]

b) Both roots in ( , a )

c) Both roots in (  )

d) One root in ( , a ) and other in ( )

IIT 2000
825

For what value of m does the system of equations 3x + my = m, 2x − 5y = 20 have a solution satisfying the condition x > 0, y > 0.

a) m  (−∞, ∞)

b) m  (−∞, −15) ∪ (30, ∞)

c)  

d)  

For what value of m does the system of equations 3x + my = m, 2x − 5y = 20 have a solution satisfying the condition x > 0, y > 0.

a) m  (−∞, ∞)

b) m  (−∞, −15) ∪ (30, ∞)

c)  

d)  

IIT 1979

Play Selected  Login to save this search...