|
801 |
Multiple choice Let be three vectors. A vector in the plane of b and c whose projection on a is of magnitude is a)  b)  c)  d) 
Multiple choice Let be three vectors. A vector in the plane of b and c whose projection on a is of magnitude is a)  b)  c)  d) 
|
IIT 1993 |
|
|
802 |
Let A be vector parallel to the line of intersection of planes P1 and P2. Plane P1 is parallel to the vectors and and that P2 is parallel to and , then the angle between vector A and a given vector is a)  b)  c)  d) 
|
IIT 2006 |
|
|
803 |
Find the range of values of t for which a) (− , − ) b) ( , ) c) (− , − ) U ( , ) d) (− , )
|
IIT 2005 |
|
|
804 |
A vector A has components A1, A2, A3 in a right handed rectangular cartesian coordinate system OXYZ. The coordinate system is rotated about the X–axis through an angle . Find the components of A in the new co-ordinate system in terms of A1, A2, A3.
A vector A has components A1, A2, A3 in a right handed rectangular cartesian coordinate system OXYZ. The coordinate system is rotated about the X–axis through an angle . Find the components of A in the new co-ordinate system in terms of A1, A2, A3.
|
IIT 1983 |
|
|
805 |
The value of is equal to a)  b)  c)  d) 
The value of is equal to a)  b)  c)  d) 
|
IIT 1991 |
|
|
806 |
In a triangle OAB, E is the midpoint of BO and D is a point on AB such that AD : DB = 2 : 1. If OD and AE intercept at P determine the ratio OP : PD using vector methods.
In a triangle OAB, E is the midpoint of BO and D is a point on AB such that AD : DB = 2 : 1. If OD and AE intercept at P determine the ratio OP : PD using vector methods.
|
IIT 1989 |
|
|
807 |
The position vectors of the vertices A, B, C of a tetrahedron are respectively. The altitude from the vertex D to the opposite face ABC meets the median line through A of the triangle ABC at E. If the length of the side AD is 4 and the volume of the tetrahedron is . Find the position vector of E or all possible positions.
The position vectors of the vertices A, B, C of a tetrahedron are respectively. The altitude from the vertex D to the opposite face ABC meets the median line through A of the triangle ABC at E. If the length of the side AD is 4 and the volume of the tetrahedron is . Find the position vector of E or all possible positions.
|
IIT 1996 |
|
|
808 |
For any two vectors u and v prove that i)  ii) 
For any two vectors u and v prove that i)  ii) 
|
IIT 1998 |
|
|
809 |
True/False If for some non zero vector X then a) True b) False
True/False If for some non zero vector X then a) True b) False
|
IIT 1983 |
|
|
810 |
If then a) True b) False
If then a) True b) False
|
IIT 1979 |
|
|
811 |
Let and where O, A and B are non-collinear points. Let p denote the area of the quadrilateral OABC and let q denote the area of the quadrilateral with OA and OC as adjacent sides. If p = kq then k = . . . . .
Let and where O, A and B are non-collinear points. Let p denote the area of the quadrilateral OABC and let q denote the area of the quadrilateral with OA and OC as adjacent sides. If p = kq then k = . . . . .
|
IIT 1997 |
|
|
812 |
Prove that = 2[cosx + cos3x + cos5x + … + cos(2k−1)x] for any positive integer k. Hence prove that = 
|
IIT 1990 |
|
|
813 |
The function f(x) =|px – q| + r |x|, x ε (− , ) where p > 0, q > 0, r > 0 assumes minimum value on one point if a) p ≠ q b) r = q c) r ≠ p d) r = p = q
The function f(x) =|px – q| + r |x|, x ε (− , ) where p > 0, q > 0, r > 0 assumes minimum value on one point if a) p ≠ q b) r = q c) r ≠ p d) r = p = q
|
IIT 1995 |
|
|
814 |
Let f : R → R be any function defined g : R → R by g (x) = |f (x)| for all x. Then g is a) onto if f is onto b) one to one if f is one to one c) continuous if f is continuous d) differentiable if f is differentiable
Let f : R → R be any function defined g : R → R by g (x) = |f (x)| for all x. Then g is a) onto if f is onto b) one to one if f is one to one c) continuous if f is continuous d) differentiable if f is differentiable
|
IIT 2000 |
|
|
815 |
If f : [ 1, → [ 2, ] is given by f (x) = x + then ( x ) is given by a)  b)  c)  d) 1 + 
|
IIT 2001 |
|
|
816 |
The function of f : R → R be defined by f (x) = 2x + sinx for x ε R . Then f is a) one-one and onto b) one-one but not onto c) onto but not one-one d) neither one-one nor onto
The function of f : R → R be defined by f (x) = 2x + sinx for x ε R . Then f is a) one-one and onto b) one-one but not onto c) onto but not one-one d) neither one-one nor onto
|
IIT 2002 |
|
|
817 |
Multiple choice There exists a triangle ABC satisfying the conditions a) bsinA = a, A < b) bsinA > a, A > c) bsinA > a, A < d) bsinA < a, A < , b > a e) bsinA < a, A > , b = a
Multiple choice There exists a triangle ABC satisfying the conditions a) bsinA = a, A < b) bsinA > a, A > c) bsinA > a, A < d) bsinA < a, A < , b > a e) bsinA < a, A > , b = a
|
IIT 1986 |
|
|
818 |
With usual notation if in a triangle ABC, then . a) True b) False
With usual notation if in a triangle ABC, then . a) True b) False
|
IIT 1984 |
|
|
819 |
If in a triangle ABC, cosA cosB + sinA sinB sin C = 1 then show that a : b : c = 1 : 1 :  a) True b) False
If in a triangle ABC, cosA cosB + sinA sinB sin C = 1 then show that a : b : c = 1 : 1 :  a) True b) False
|
IIT 1986 |
|
|
820 |
If the lines and intersect then the value of k is a)  b)  c)  d) 
If the lines and intersect then the value of k is a)  b)  c)  d) 
|
IIT 2004 |
|
|
821 |
The area of a triangle whose vertices are is
The area of a triangle whose vertices are is
|
IIT 1983 |
|
|
822 |
The parameter on which the value of the determinant Δ =  does not depend upon is a) a b) p c) d d) x
The parameter on which the value of the determinant Δ =  does not depend upon is a) a b) p c) d d) x
|
IIT 1997 |
|
|
823 |
Consider the lines ; The unit vector perpendicular to both L1 and L2 is a)  b)  c)  d) 
Consider the lines ; The unit vector perpendicular to both L1 and L2 is a)  b)  c)  d) 
|
IIT 2008 |
|
|
824 |
If b > a then the equation ( x – a ) ( x – b ) 1 = 0 has a) Both roots in [ a, b ] b) Both roots in ( , a ) c) Both roots in ( ) d) One root in ( , a ) and other in ( )
If b > a then the equation ( x – a ) ( x – b ) 1 = 0 has a) Both roots in [ a, b ] b) Both roots in ( , a ) c) Both roots in ( ) d) One root in ( , a ) and other in ( )
|
IIT 2000 |
|
|
825 |
For what value of m does the system of equations 3x + my = m, 2x − 5y = 20 have a solution satisfying the condition x > 0, y > 0. a) m (−∞, ∞) b) m (−∞, −15) ∪ (30, ∞) c)  d) 
For what value of m does the system of equations 3x + my = m, 2x − 5y = 20 have a solution satisfying the condition x > 0, y > 0. a) m (−∞, ∞) b) m (−∞, −15) ∪ (30, ∞) c)  d) 
|
IIT 1979 |
|