All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
801

Let a, b, c be three positive real numbers and
 
Then tan θ = ………..

a) 0

b) 1

c) 2

d) 3

Let a, b, c be three positive real numbers and
 
Then tan θ = ………..

a) 0

b) 1

c) 2

d) 3

IIT 1981
802

If X and Y are two sets and f : X  Y
If { f (c) = y, c ⊂ x, y ⊂ Y } then the true statement is

a)

b)

c) , a ⊂ X

d)

If X and Y are two sets and f : X  Y
If { f (c) = y, c ⊂ x, y ⊂ Y } then the true statement is

a)

b)

c) , a ⊂ X

d)

IIT 2005
803

Let O (0, 0), P (3, 4), Q (6, 0) be the vertices of the triangle OPQ. The point inside the triangle OPQ is such that OPR, PQR, OQR are of equal area. The coordinates of R are

a)

b)

c)

d)

Let O (0, 0), P (3, 4), Q (6, 0) be the vertices of the triangle OPQ. The point inside the triangle OPQ is such that OPR, PQR, OQR are of equal area. The coordinates of R are

a)

b)

c)

d)

IIT 2006
804

 If f be a one–one function with domain { x, y, z}and range { 1, 2, 3}. It is given that exactly one of the following statements is true and the remaining statements are false. Determine (1)

1. f(x) = 1

2. f(y) ≠ 1

3. f(z) ≠ 2

a) {0}

b) {1}

c) {y}

d) none of the above

 If f be a one–one function with domain { x, y, z}and range { 1, 2, 3}. It is given that exactly one of the following statements is true and the remaining statements are false. Determine (1)

1. f(x) = 1

2. f(y) ≠ 1

3. f(z) ≠ 2

a) {0}

b) {1}

c) {y}

d) none of the above

IIT 1982
805

One or more correct answers
In triangle ABC the internal angle bisector of ∠A meets the side BC in D. DE is a perpendicular to AD which meets AC in E and AB in F. Then

a) AE is harmonic mean of b and c

b) AD

c)

d) Δ AEF is isosceles

One or more correct answers
In triangle ABC the internal angle bisector of ∠A meets the side BC in D. DE is a perpendicular to AD which meets AC in E and AB in F. Then

a) AE is harmonic mean of b and c

b) AD

c)

d) Δ AEF is isosceles

IIT 2006
806

For a triangle ABC it is given that  , then Δ ABC is equilateral.

a) True

b) False

For a triangle ABC it is given that  , then Δ ABC is equilateral.

a) True

b) False

IIT 1984
807

True / False

The function f (x) =  is not one to one.

a) True

b) False

True / False

The function f (x) =  is not one to one.

a) True

b) False

IIT 1983
808

Find the set of all values of a such that  are sides of a triangle.

a) (0, 3)

b) (3, ∞)

c) (0, 5)

d) (5, ∞)

Find the set of all values of a such that  are sides of a triangle.

a) (0, 3)

b) (3, ∞)

c) (0, 5)

d) (5, ∞)

IIT 1985
809

Fill in the blank

Let A be the set of n distinct elements then the total number of distinct functions from A to A is ……… and out of these …… are onto

a) n!, 1

b) nn, n!

c) nn, 1

d) none of the above

Fill in the blank

Let A be the set of n distinct elements then the total number of distinct functions from A to A is ……… and out of these …… are onto

a) n!, 1

b) nn, n!

c) nn, 1

d) none of the above

IIT 1985
810

In a triangle of base a the ratio of the other two sides is  r (< 1). Then the altitude of the triangle is less than or equal to  .

a) True

b) False

In a triangle of base a the ratio of the other two sides is  r (< 1). Then the altitude of the triangle is less than or equal to  .

a) True

b) False

IIT 1991
811

The value of k such that  lies in the plane
  is

a) 7

b) – 7

c) No real value

d) 4

The value of k such that  lies in the plane
  is

a) 7

b) – 7

c) No real value

d) 4

IIT 2003
812

If ABCD are four points in a space, prove that

If ABCD are four points in a space, prove that

IIT 1987
813

If a, b, c are distinct positive numbers then the expression
( b + c – a ) ( c + a – b ) ( a + b – c ) –abc is

a) Positive

b) Negative

c) Non–positive

d) None of these

If a, b, c are distinct positive numbers then the expression
( b + c – a ) ( c + a – b ) ( a + b – c ) –abc is

a) Positive

b) Negative

c) Non–positive

d) None of these

IIT 1986
814

If M is a 3 x 3 matrix where det (M) = 1 and MMT = I, then prove that det (M – I) = 0.

If M is a 3 x 3 matrix where det (M) = 1 and MMT = I, then prove that det (M – I) = 0.

IIT 2004
815

Let A =

If U1, U2, U3 are column matrices satisfying
AU1 =  , AU2 =  and AU3 =

and U is a 3 x 3 matrix whose columns are U1, U2, Uthen the value of [ 3  2  0 ] U  is

a)

b)

c)

d)

Let A =

If U1, U2, U3 are column matrices satisfying
AU1 =  , AU2 =  and AU3 =

and U is a 3 x 3 matrix whose columns are U1, U2, Uthen the value of [ 3  2  0 ] U  is

a)

b)

c)

d)

IIT 2006
816

Let a, b, c, d be real numbers in geometric progression. If u, v, w satisfy the system of equations

 
 
 
Then show that the roots of the equation
 
 
and  are reciprocal of each other.

Let a, b, c, d be real numbers in geometric progression. If u, v, w satisfy the system of equations

 
 
 
Then show that the roots of the equation
 
 
and  are reciprocal of each other.

IIT 1999
817

The interior angles of a polygon are in Arithmetic Progression. The smallest angle is 120° and the common difference is 5. Find the number of sides of the polygon.

The interior angles of a polygon are in Arithmetic Progression. The smallest angle is 120° and the common difference is 5. Find the number of sides of the polygon.

IIT 1980
818

Let a1, a2, … an be positive real numbers in Geometric Progression. For each n let An, Gn, Hn be respectively the arithmetic mean, geometric mean and harmonic mean of a1, a2, .  .  .  ., an. Find the expressions for the Geometric mean of G1, G2, .  .  .  .Gn in terms of A1, A2, .  .  .  .,An; H1, H2, .  .  .  .Hn

Let a1, a2, … an be positive real numbers in Geometric Progression. For each n let An, Gn, Hn be respectively the arithmetic mean, geometric mean and harmonic mean of a1, a2, .  .  .  ., an. Find the expressions for the Geometric mean of G1, G2, .  .  .  .Gn in terms of A1, A2, .  .  .  .,An; H1, H2, .  .  .  .Hn

IIT 2001
819

If total number of runs scored in n matches is
 where n > 1 and the runs scored in the kth match are given by k.2n + 1 – k  where 1 ≤ k ≤ n. Find n.

If total number of runs scored in n matches is
 where n > 1 and the runs scored in the kth match are given by k.2n + 1 – k  where 1 ≤ k ≤ n. Find n.

IIT 2005
820

In a triangle ABC if cotA, cotB, cotC are in Arithmetic Progression then a, b, c are in .  .  .  .  . Progression.

In a triangle ABC if cotA, cotB, cotC are in Arithmetic Progression then a, b, c are in .  .  .  .  . Progression.

IIT 1985
821

For any odd integer n ≥ 1,
n3 – (n – 1)3 + .  .  . + (−)n – 1 13 = .  .  .

For any odd integer n ≥ 1,
n3 – (n – 1)3 + .  .  . + (−)n – 1 13 = .  .  .

IIT 1996
822

The area of the equilateral triangle which contains three coins of unit radius is

a)  square units

b)  square units

c)  square units

d)  square units

The area of the equilateral triangle which contains three coins of unit radius is

a)  square units

b)  square units

c)  square units

d)  square units

IIT 2005
823

a) True

b) False

a) True

b) False

IIT 1982
824

a) True

b) False

a) True

b) False

IIT 2004
825

A vector a has components 2p and 1 with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If with respect to new system a has components p + 1 and 1 then

a) p ≠ 0

b) p = 1 or p =

c) p = −1 or

d) p = 1 or p = −1

e) None of these

A vector a has components 2p and 1 with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If with respect to new system a has components p + 1 and 1 then

a) p ≠ 0

b) p = 1 or p =

c) p = −1 or

d) p = 1 or p = −1

e) None of these

IIT 1986

Play Selected  Login to save this search...