776 |
Let f(x) = |x – 1|, then a)  b)  c)  d) None of these
Let f(x) = |x – 1|, then a)  b)  c)  d) None of these
|
IIT 1983 |
|
777 |
The differential equation representing the family of curves where c is a positive parameter, is of a) Order 1 b) Order 2 c) Degree 3 d) Degree 4
The differential equation representing the family of curves where c is a positive parameter, is of a) Order 1 b) Order 2 c) Degree 3 d) Degree 4
|
IIT 1999 |
|
778 |
Let a, b, c be real numbers with a2 + b2 + c2 = 1. Show that the equation represents a straight line = 0
Let a, b, c be real numbers with a2 + b2 + c2 = 1. Show that the equation represents a straight line = 0
|
IIT 2001 |
|
779 |
Let , then the set is a)  b)  c)  d) ϕ
Let , then the set is a)  b)  c)  d) ϕ
|
IIT 1995 |
|
780 |
A normal is drawn at a point of a curve meeting X-axis at Q. If PQ is of constant length k, then show that the differential equation of the curve is
A normal is drawn at a point of a curve meeting X-axis at Q. If PQ is of constant length k, then show that the differential equation of the curve is
|
IIT 1994 |
|
781 |
If f(x) = 3x – 5 then a) is given by  b) is given by  c) does not exist because f is not one-one d) does not exist because f is not onto
If f(x) = 3x – 5 then a) is given by  b) is given by  c) does not exist because f is not one-one d) does not exist because f is not onto
|
IIT 1998 |
|
782 |
Find the integral solutions of the following system of inequality a) x = 1 b) x = 2 c) x = 3 d) x = 4
Find the integral solutions of the following system of inequality a) x = 1 b) x = 2 c) x = 3 d) x = 4
|
IIT 1979 |
|
783 |
Area bounded by and 
Area bounded by and 
|
IIT 2006 |
|
784 |
mn squares of equal size are arranged to form a rectangle of dimension m by n, where m and n are natural numbers. Two squares will be called neighbours if they have exactly one common side. A natural number is written in each square such that the number written in any square is the arithmetic mean of the numbers written in the neighbouring squares. Show that this is possible only if all the numbers used are equal.
mn squares of equal size are arranged to form a rectangle of dimension m by n, where m and n are natural numbers. Two squares will be called neighbours if they have exactly one common side. A natural number is written in each square such that the number written in any square is the arithmetic mean of the numbers written in the neighbouring squares. Show that this is possible only if all the numbers used are equal.
|
IIT 1982 |
|
785 |
Let A =  AU1 = , AU2 = and AU3 =  a) 3 b) −3 c) d) 2
Let A =  AU1 = , AU2 = and AU3 =  a) 3 b) −3 c) d) 2
|
IIT 2006 |
|
786 |
The domain of definition of is a)  b)  c)  d) 
The domain of definition of is a)  b)  c)  d) 
|
IIT 2001 |
|
787 |
Let f : ℝ → ℝ be defined by f(x) = 2x + sinx for all x ℝ. Then f is a) One to one and onto b) One to one but not onto c) Onto but not one to one d) Neither one to one nor onto
Let f : ℝ → ℝ be defined by f(x) = 2x + sinx for all x ℝ. Then f is a) One to one and onto b) One to one but not onto c) Onto but not one to one d) Neither one to one nor onto
|
IIT 2002 |
|
788 |
The set of all solutions of the equation 
The set of all solutions of the equation 
|
IIT 1997 |
|
789 |
Multiple choices with one or more than one correct answers then a) x = f(y) b) f(1) = 3 c) y increases with x for x < 1 d) f is a rational function of x
Multiple choices with one or more than one correct answers then a) x = f(y) b) f(1) = 3 c) y increases with x for x < 1 d) f is a rational function of x
|
IIT 1984 |
|
790 |
Given and f(x) = cosx – x(x + 1). Find the range of f (A).
Given and f(x) = cosx – x(x + 1). Find the range of f (A).
|
IIT 1980 |
|
791 |
Multiple choices If the first and term of an Arithmetic Progression, a Geometric Progression and a Harmonic Progression are equal and their nth term are a, b, c respectively then a)  b)  c)  d) 
Multiple choices If the first and term of an Arithmetic Progression, a Geometric Progression and a Harmonic Progression are equal and their nth term are a, b, c respectively then a)  b)  c)  d) 
|
IIT 1988 |
|
792 |
Show that the value of wherever defined, never lies between and 3.
Show that the value of wherever defined, never lies between and 3.
|
IIT 1992 |
|
793 |
Let where A, B, C are real numbers. Prove that if f(n) is an integer whenever n is an integer, then the numbers 2A, A + B and C are all integers. Conversely prove that if the numbers 2A, A + B and C all integers then f(n) is an integer whenever n is an integer.
Let where A, B, C are real numbers. Prove that if f(n) is an integer whenever n is an integer, then the numbers 2A, A + B and C are all integers. Conversely prove that if the numbers 2A, A + B and C all integers then f(n) is an integer whenever n is an integer.
|
IIT 1998 |
|
794 |
Let and be three non-zero vectors such that c is a unit vector perpendicular to both the vectors a and b and the angle between the vectors a and b is then is equal to a) 1 b)  c)  d) None of these
Let and be three non-zero vectors such that c is a unit vector perpendicular to both the vectors a and b and the angle between the vectors a and b is then is equal to a) 1 b)  c)  d) None of these
|
IIT 1986 |
|
795 |
Does there exist a Geometric Progression containing 27, 8 and 12 as three of its terms? If it exists, how many such progressions are possible?
Does there exist a Geometric Progression containing 27, 8 and 12 as three of its terms? If it exists, how many such progressions are possible?
|
IIT 1982 |
|
796 |
The values of lies in the interval . . .
The values of lies in the interval . . .
|
IIT 1983 |
|
797 |
If and then (gof)(x) is equal to
If and then (gof)(x) is equal to
|
IIT 1996 |
|
798 |
If 0 < x < 1, then is equal to
If 0 < x < 1, then is equal to
|
IIT 2008 |
|
799 |
The sum of integers from 1 to 100 that are divisible by 2 or 5 is
The sum of integers from 1 to 100 that are divisible by 2 or 5 is
|
IIT 1984 |
|
800 |
The minimum value of the expression where are real numbers satisfying is a) Positive b) Zero c) Negative d) –3
The minimum value of the expression where are real numbers satisfying is a) Positive b) Zero c) Negative d) –3
|
IIT 1995 |
|