All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
776

In a triangle OAB, E is the midpoint of BO and D is a point on AB such that AD : DB = 2 : 1. If OD and AE intercept at P determine the ratio OP : PD using vector methods.

In a triangle OAB, E is the midpoint of BO and D is a point on AB such that AD : DB = 2 : 1. If OD and AE intercept at P determine the ratio OP : PD using vector methods.

IIT 1989
777

The position vectors of the vertices A, B, C of a tetrahedron are  respectively. The altitude from the vertex D to the opposite face ABC meets the median line through A of the triangle ABC at E. If the length of the side AD is 4 and the volume of the tetrahedron is . Find the position vector of E or all possible positions.

The position vectors of the vertices A, B, C of a tetrahedron are  respectively. The altitude from the vertex D to the opposite face ABC meets the median line through A of the triangle ABC at E. If the length of the side AD is 4 and the volume of the tetrahedron is . Find the position vector of E or all possible positions.

IIT 1996
778

For any two vectors u and v prove that

i)

ii)

For any two vectors u and v prove that

i)

ii)

IIT 1998
779

True/False

If  for some non zero vector X then  

a) True

b) False

True/False

If  for some non zero vector X then  

a) True

b) False

IIT 1983
780

If  then  

a) True

b) False

If  then  

a) True

b) False

IIT 1979
781

Let  and  where O, A and B are non-collinear points. Let p denote the area of the quadrilateral OABC and let q denote the area of the quadrilateral with OA and OC as adjacent sides. If p = kq then k = .  .  .  .  .

Let  and  where O, A and B are non-collinear points. Let p denote the area of the quadrilateral OABC and let q denote the area of the quadrilateral with OA and OC as adjacent sides. If p = kq then k = .  .  .  .  .

IIT 1997
782

Prove that  = 2[cosx + cos3x + cos5x + … + cos(2k−1)x] for any positive integer k. Hence prove that  =

Prove that  = 2[cosx + cos3x + cos5x + … + cos(2k−1)x] for any positive integer k. Hence prove that  =

IIT 1990
783

The function
f(x) =|px – q| + r |x|, x ε (−, )
where p > 0, q > 0, r > 0 assumes minimum value on one point if

a) p ≠ q

b) r = q

c) r ≠ p

d) r = p = q

The function
f(x) =|px – q| + r |x|, x ε (−, )
where p > 0, q > 0, r > 0 assumes minimum value on one point if

a) p ≠ q

b) r = q

c) r ≠ p

d) r = p = q

IIT 1995
784

Let f : R → R be any function defined g : R → R by g (x) = |f (x)| for all x. Then g is

a) onto if f is onto

b) one to one if f is one to one

c) continuous if f is continuous

d) differentiable if f is differentiable

Let f : R → R be any function defined g : R → R by g (x) = |f (x)| for all x. Then g is

a) onto if f is onto

b) one to one if f is one to one

c) continuous if f is continuous

d) differentiable if f is differentiable

IIT 2000
785

If f : [ 1,  → [ 2, ] is given by f (x) = x +  then ( x ) is given by

a)

b)

c)

d) 1 +

If f : [ 1,  → [ 2, ] is given by f (x) = x +  then ( x ) is given by

a)

b)

c)

d) 1 +

IIT 2001
786

The function of f : R → R be defined by f (x) = 2x + sinx for x ε R . Then f is

a) one-one and onto

b) one-one but not onto

c) onto but not one-one

d) neither one-one nor onto

The function of f : R → R be defined by f (x) = 2x + sinx for x ε R . Then f is

a) one-one and onto

b) one-one but not onto

c) onto but not one-one

d) neither one-one nor onto

IIT 2002
787

Multiple choice

There exists a triangle ABC satisfying the conditions

a) bsinA = a, A <

b) bsinA > a, A >

c) bsinA > a, A <

d) bsinA < a, A <, b > a

e) bsinA < a, A >, b = a

Multiple choice

There exists a triangle ABC satisfying the conditions

a) bsinA = a, A <

b) bsinA > a, A >

c) bsinA > a, A <

d) bsinA < a, A <, b > a

e) bsinA < a, A >, b = a

IIT 1986
788

With usual notation if in a triangle ABC,  then

 .

a) True

b) False

With usual notation if in a triangle ABC,  then

 .

a) True

b) False

IIT 1984
789

If in a triangle ABC, cosA cosB + sinA sinB sin C = 1 then show that  a : b : c = 1 : 1 :

a) True

b) False

If in a triangle ABC, cosA cosB + sinA sinB sin C = 1 then show that  a : b : c = 1 : 1 :

a) True

b) False

IIT 1986
790

If the lines  and  intersect then the value of k is

a)

b)

c)

d)

If the lines  and  intersect then the value of k is

a)

b)

c)

d)

IIT 2004
791

A variable plane at a distance of one unit from the origin cuts the coordinate axes at A, B and C. If the centroid D(x, y, z) of triangle ABC satisfies the relation  then the value of k is

a) 9

b)

c) 1

d) 3

A variable plane at a distance of one unit from the origin cuts the coordinate axes at A, B and C. If the centroid D(x, y, z) of triangle ABC satisfies the relation  then the value of k is

a) 9

b)

c) 1

d) 3

IIT 2005
792

Find the equation of the plane passing through the points (2, 1, 0), (4, 1, 1), (5, 0, 1). Find the point Q such that its distance from the plane is equal to the point P(2, 1, 6) from the plane and the line joining P and Q is perpendicular to the plane.

Find the equation of the plane passing through the points (2, 1, 0), (4, 1, 1), (5, 0, 1). Find the point Q such that its distance from the plane is equal to the point P(2, 1, 6) from the plane and the line joining P and Q is perpendicular to the plane.

IIT 2003
793

The unit vector perpendicular to the plane determined by
 is.

The unit vector perpendicular to the plane determined by
 is.

IIT 1983
794

Consider the lines

 ;

 
The shortest distance between L1 and L2 is

a) 0

b)

c)

d)

Consider the lines

 ;

 
The shortest distance between L1 and L2 is

a) 0

b)

c)

d)

IIT 2008
795

Let ABCD is the base of parallelopiped T and Aʹ.BʹCʹDʹ be the upper face. The parallelopiped is compressed so that the vertex Aʹ shifts to Aʹʹ on a parallelepiped S. If the volume of the new parallelopiped is 90% of the parallelopiped T, prove that the locus of Aʹʹ is a plane.

Let ABCD is the base of parallelopiped T and Aʹ.BʹCʹDʹ be the upper face. The parallelopiped is compressed so that the vertex Aʹ shifts to Aʹʹ on a parallelepiped S. If the volume of the new parallelopiped is 90% of the parallelopiped T, prove that the locus of Aʹʹ is a plane.

IIT 2004
796

Show that  =

Show that  =

IIT 1985
797

For all A, B, C, P, Q, R show that
 = 0

For all A, B, C, P, Q, R show that
 = 0

IIT 1996
798

Let f(x) = |x – 1|, then

a)

b)

c)

d) None of these

Let f(x) = |x – 1|, then

a)

b)

c)

d) None of these

IIT 1983
799

The differential equation representing the family of curves  where c is a positive parameter, is of

a) Order 1

b) Order 2

c) Degree 3

d) Degree 4

The differential equation representing the family of curves  where c is a positive parameter, is of

a) Order 1

b) Order 2

c) Degree 3

d) Degree 4

IIT 1999
800

Let a, b, c be real numbers with a2 + b2 + c2 = 1. Show that the equation represents a straight line
 = 0

Let a, b, c be real numbers with a2 + b2 + c2 = 1. Show that the equation represents a straight line
 = 0

IIT 2001

Play Selected  Login to save this search...