All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
726

The domain of the function  is

The domain of the function  is

IIT 1984
727

If f is an even function defined on (−5, 5) then the four real values of x satisfying the equation  are

If f is an even function defined on (−5, 5) then the four real values of x satisfying the equation  are

IIT 1996
728

Let a1, a2, … an be positive real numbers in Geometric Progression. For each n let An, Gn, Hn be respectively the arithmetic mean, geometric mean and harmonic mean of a1, a2, .  .  .  ., an. Find the expressions for the Geometric mean of G1, G2, .  .  .  .Gn in terms of A1, A2, .  .  .  .,An; H1, H2, .  .  .  .Hn

Let a1, a2, … an be positive real numbers in Geometric Progression. For each n let An, Gn, Hn be respectively the arithmetic mean, geometric mean and harmonic mean of a1, a2, .  .  .  ., an. Find the expressions for the Geometric mean of G1, G2, .  .  .  .Gn in terms of A1, A2, .  .  .  .,An; H1, H2, .  .  .  .Hn

IIT 2001
729

Let  , 0 < x < 2 are integers m ≠ 0, n > 0 and let p be the left hand derivative of |x − 1| at x = 1. If , then

a) n = −1, m = 1

b) n = 1, m = −1

c) n = 2, m = 2

d) n > 2, n = m

Let  , 0 < x < 2 are integers m ≠ 0, n > 0 and let p be the left hand derivative of |x − 1| at x = 1. If , then

a) n = −1, m = 1

b) n = 1, m = −1

c) n = 2, m = 2

d) n > 2, n = m

IIT 2008
730

For three vectors  which of the following expressions is not equal to any of the remaining three

a)

b)

c)

d)

For three vectors  which of the following expressions is not equal to any of the remaining three

a)

b)

c)

d)

IIT 1998
731

If total number of runs scored in n matches is
 where n > 1 and the runs scored in the kth match are given by k.2n + 1 – k  where 1 ≤ k ≤ n. Find n.

If total number of runs scored in n matches is
 where n > 1 and the runs scored in the kth match are given by k.2n + 1 – k  where 1 ≤ k ≤ n. Find n.

IIT 2005
732

In a triangle ABC if cotA, cotB, cotC are in Arithmetic Progression then a, b, c are in .  .  .  .  . Progression.

In a triangle ABC if cotA, cotB, cotC are in Arithmetic Progression then a, b, c are in .  .  .  .  . Progression.

IIT 1985
733

For any odd integer n ≥ 1,
n3 – (n – 1)3 + .  .  . + (−)n – 1 13 = .  .  .

For any odd integer n ≥ 1,
n3 – (n – 1)3 + .  .  . + (−)n – 1 13 = .  .  .

IIT 1996
734

A unit vector which is orthogonal to the vectors  and

coplanar with the vectors  and  is

a)

b)

c)

d)

A unit vector which is orthogonal to the vectors  and

coplanar with the vectors  and  is

a)

b)

c)

d)

IIT 2004
735

The area of the equilateral triangle which contains three coins of unit radius is

a)  square units

b)  square units

c)  square units

d)  square units

The area of the equilateral triangle which contains three coins of unit radius is

a)  square units

b)  square units

c)  square units

d)  square units

IIT 2005
736

a) True

b) False

a) True

b) False

IIT 1982
737

a) True

b) False

a) True

b) False

IIT 2004
738

Match the following  is

Column 1

Column 2

i) Positive

A) ( )

ii) Negative

B) ( )

C) ( )

D) ( )

Match the following  is

Column 1

Column 2

i) Positive

A) ( )

ii) Negative

B) ( )

C) ( )

D) ( )

IIT 1992
739

If the vectors b, c, d, are not coplanar then prove that a is parallel to the vector  

If the vectors b, c, d, are not coplanar then prove that a is parallel to the vector  

IIT 1994
740

Prove by vector method or otherwise, that the point of intersection of the diagonals of a trapezium lies on the line passing through the mid points of the parallel sides (you may assume that the trapezium is not a parallelogram)

Prove by vector method or otherwise, that the point of intersection of the diagonals of a trapezium lies on the line passing through the mid points of the parallel sides (you may assume that the trapezium is not a parallelogram)

IIT 1998
741

True / False

Let  are unit vectors. Suppose that  and the angle between B and  then

a) True

b) False

True / False

Let  are unit vectors. Suppose that  and the angle between B and  then

a) True

b) False

IIT 1981
742

2sinx + tanx > 3x where 0 ≤ x ≤

a) True

b) False

2sinx + tanx > 3x where 0 ≤ x ≤

a) True

b) False

IIT 1990
743

Let f(x) = (x + 1)2 – 1, x ≥ −1 then the set {x : f(x) = f-1(x)} is

a)

b) { 0, 1, −1}

c) {0, −1}

d) Ф

Let f(x) = (x + 1)2 – 1, x ≥ −1 then the set {x : f(x) = f-1(x)} is

a)

b) { 0, 1, −1}

c) {0, −1}

d) Ф

IIT 1995
744

Suppose f (x) = (x + 1)2 for x ≥ . If g (x) is the function whose graph is the reflection of the graph of f (x) with respect to the line y = x then g (x) equals

a) ,  0

b)

c)

d)

Suppose f (x) = (x + 1)2 for x ≥ . If g (x) is the function whose graph is the reflection of the graph of f (x) with respect to the line y = x then g (x) equals

a) ,  0

b)

c)

d)

IIT 2000
745

Let a, b, c be three positive real numbers and
 
Then tan θ = ………..

a) 0

b) 1

c) 2

d) 3

Let a, b, c be three positive real numbers and
 
Then tan θ = ………..

a) 0

b) 1

c) 2

d) 3

IIT 1981
746

If X and Y are two sets and f : X  Y
If { f (c) = y, c ⊂ x, y ⊂ Y } then the true statement is

a)

b)

c) , a ⊂ X

d)

If X and Y are two sets and f : X  Y
If { f (c) = y, c ⊂ x, y ⊂ Y } then the true statement is

a)

b)

c) , a ⊂ X

d)

IIT 2005
747

Multiple choice

There exists a triangle ABC satisfying the conditions

a) bsinA = a, A <

b) bsinA > a, A >

c) bsinA > a, A <

d) bsinA < a, A <, b > a

e) bsinA < a, A >, b = a

Multiple choice

There exists a triangle ABC satisfying the conditions

a) bsinA = a, A <

b) bsinA > a, A >

c) bsinA > a, A <

d) bsinA < a, A <, b > a

e) bsinA < a, A >, b = a

IIT 1986
748

With usual notation if in a triangle ABC,  then

 .

a) True

b) False

With usual notation if in a triangle ABC,  then

 .

a) True

b) False

IIT 1984
749

If in a triangle ABC, cosA cosB + sinA sinB sin C = 1 then show that  a : b : c = 1 : 1 :

a) True

b) False

If in a triangle ABC, cosA cosB + sinA sinB sin C = 1 then show that  a : b : c = 1 : 1 :

a) True

b) False

IIT 1986
750

If the lines  and  intersect then the value of k is

a)

b)

c)

d)

If the lines  and  intersect then the value of k is

a)

b)

c)

d)

IIT 2004

Play Selected  Login to save this search...